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Summary

Networked Dynamical Systems
An Input-Output Approach towards Stability and Synchronization

Analysis

This thesis describes novel tools for the analysis of stability and synchronization
in networked dynamical systems. Recent advances in communication technol-
ogy have given rise to a wide range of applications involving networked engi-
neering systems such as, e.g., transportation systems, power grids, cooperative
robotics, etc., in which systems, sensors, actuators and controllers are linked over
a (wireless) communication network. A well-known challenge in this context is
that sampling and delay effects induced by the communication network can
render systems unstable and destroy synchronization properties in multi-agent
networked systems. The main goal of this research is to develop modelling and
analysis tools for stability and synchronization analysis in complex networked
systems, while considering asynchronous, aperiodic sampling and delay effects.
From a network perspective, this objective can be divided into the following
two problems. First, how can we guarantee system stability and performance
when information transmission over the communication network is sampled and
delayed? This problem applies to both single-loop networked control systems
wherein information is transmitted via a network between a plant and a con-
troller, and to large-scale multi-agent systems that have aperiodic, asynchronous
sensing and actuation. Second, can important global properties of the networked
system such as synchronization be guaranteed in the presence of these network-
induced effects? These questions are answered by addressing the following three
major challenges.

The first challenge is to develop modelling and stability analysis tools for
networked linear dynamical control systems subject to asynchronous, aperiodic
sampling and delay. Existing results considering this problem setting provide
tools based on time-domain methods. In contrast, we provide frequency-domain
based tools with favorable applicability properties from an engineering perspec-
tive. Additionally, for a similar problem setting, the few frequency-domain based
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results available in literature consider less generic scenarios with synchronous
sampling. We provide a novel modelling framework and a stability analysis tool
based on Integral Quadratic Constraints (IQC), which considers sampling and
delay bounds introduced by individual sensors and actuators.

In order to consider generic networked systems, which can have nonlinear
dynamics, the next challenge is to develop modelling and analysis tools for non-
linear networked control systems subject to aperiodic sampling and delay. Ex-
isting analysis methods considering this problem setting use system-dependent
functions, for example, Lyapunov functions, that need to be redefined when the
system is subjected to additional/other perturbations. Consequently, analysis
will have to be redone using new functions that may be challenging to obtain. In
contrast, in our novel approach based on Input-Output modelling, we decouple
the effects of sampling and delay as perturbations to a nominal continuous-
time system, and any additional perturbation can be easily accommodated as
an external input, without changing the general analysis framework. Using the
Input-Output framework, we provide a novel modelling and stability analysis
tool based on the notion of ‘Dissipativity Theory’. We propose novel conditions
for stability analysis in terms of dissipativity type properties of the associated
continuous-time system (without sampling and delay effects), for which many
results for classes of nonlinear systems exist in literature.

Finally, we consider generic multi-agent networked systems wherein individ-
ual agents are nonlinear. The challenge taken on is to extend the above modelling
and analysis tools to analyze synchronization properties of generic nonlinear net-
worked systems with directed, weighted, coupling gains and asynchronous infor-
mation transmission (sampling). In literature, existing results only considered
a two-agent system with synchronous sampling. By the grace of the advantages
offered by the framework we previously used for single-loop networked nonlinear
systems, here, we use a similar Input-Output modelling approach, in conjunction
with Dissipativity Theory.

The main contributions of this thesis can be summarized as the development
of:

1. A novel modelling and frequency-domain based analysis tool, using Integral
Quadratic Constraints, for stability analysis of linear networked control
systems with asynchronous, aperiodic sampling and delay.

2. A novel modelling and analysis tool based on Dissipativity Theory, for
stability analysis of nonlinear networked control systems subject to asyn-
chronous, aperiodic sampling and delay.

3. A novel modelling and analysis tool for synchronization analysis of generic
multi-agent networked systems with directed, weighted, coupling gains and
asynchronous information transmission.
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This thesis provides novel modelling and analysis tools for stability and synchro-
nization analysis of networked systems. The analysis tools provided in this thesis
aid in obtaining a trade-off between, on the one hand, system performance re-
quirements (guaranteeing system stability and synchronization properties), and,
on the other hand, sampling period bounds and delay bounds imposed by net-
work requirements. The introduced framework has laid the foundation for future
research considering additional network effects such as quantization, complex
data scheduling protocols, etc.
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Chapter 1

Introduction

This chapter presents a high-level introduction of this thesis. First, in Section
1.1, a generic description of large-scale networked systems is provided, followed
by its significance in scientific and technological aspects. Then, in Section 1.2,
the relevance and motivation is provided for analysing stability and synchroniza-
tion properties of large-scale networked systems subjected to asynchrony induced
by the communication network. The section concludes with a presentation of
the overall objective of this thesis. Section 1.3 provides a high-level literature
review of existing results in stability and synchronization of systems subjected
to communication network induced asynchrony. The in-depth literature reviews
are provided in individual chapters. The research goals and contributions of this
thesis are provided in Section 1.4 and Section 1.5, respectively. In Section 1.6, a
list of the peer-reviewed publications attached to this Ph.D. work is provided. The
chapter concludes with Section 1.7, wherein an outline of this thesis is given.

1.1 Networked Systems

The world as we know it is becoming more complex with every passing day.
Just like human beings work together towards achieving various goals, techn-
ology and automation has evolved to a level wherein systems, with or without
human interaction, can collaborate to achieve specific goals. Technological ad-
vances in this direction have in fact drawn inspiration from nature. Naturally
occurring interconnected systems, such as neuron networks, biological networks,
social networks, etc., involve constant communication between entities forming
the network. Such communication results in some form of benefit for the net-
work at the sub-system and global level [35]. In such settings, be it natural or
artificial, individual systems communicate with each other via system-specific
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communication channels, in turn forming an intricate web of interconnected
systems with numerous links. The overall system encompassing such a web is
commonly defined as a networked system.

In engineering and scientific applications, such networked control systems
are occurring increasingly frequently. Networked systems are preferred for many
tasks due to advantages such as efficient utilisation of global resources, higher
flexibility and reliability, easier maintenance, etc., in comparison to conventional
point-to-point control systems [54], [111], [133], [144]. Consequently, they are
used in many different applications ranging from critical infrastructures such as
water distribution, transportation, smart grids and smart electricity networks,
to technological applications such as swarm robotics, mobile sensor networks,
co-operative control of multi-agent systems, supervisory control, etc., [35], [55],
[111]. For example, in smart grids, many electrical components such as trans-
formers, generators, etc., interact through physical (electrical) networks and dig-
ital communication networks so that power supply is provided to consumers in a
sustainable and economic fashion [120], [146]. In swarm robotics, the individual
sub-systems that form the networked systems are robots, which communicate
with each other in applications such as surveying, tracking, transportation, etc.
[23]. Another example is intelligent transportation networks used in regulating
traffic flow, which are composed of heterogeneous sub-systems such as vehicles
and humans interacting within the network, distributed controllers, etc., [4]. In
cyber-physical systems, which are defined as joining physical and informational
(cyber) worlds, a wide variety of “smart devices”, wherein objects can be quite
reduced in size but involve numerous processors, sensors, actuators, etc., form
a network. For instance, a modern-day car includes more than 40 embedded
microprocessors that take into account not only local information, but also in-
formation about other vehicles and traffic events in the transportation network
[73]. Recently, strides have been made in implementing networked systems in
the “Internet of Things” (IoT), health care, etc., [69], [127]. Research is also
being carried out in exploring novel network topologies for different applications
such as resilient systems, heating and cooling systems, etc., see for example,
[60], [122] and the references therein. These and many other applications that
are supported by large-scale networked systems, have raised interest from the
scientific community since the inception of this concept.

This thesis considers two important aspects of networked systems, namely
stability and synchronization. From a high-level perspective, these properties aid
in understanding the performance of networked systems in terms of attaining
global objectives. The significance of these properties is elaborated on in the
following section.
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Subsystem

Communication Channel

Figure 1.1: A generic representation of large-scale networked dynamical systems.
The individual sub-systems, indicated by the nodes, communicate with other
sub-systems via communication channels, which can be dedicated or shared,
and wired or wireless.

1.2 Stability and Synchronization

A generic representation of large-scale networked dynamical systems is given
in Figure 1.1. In such systems, individual sub-systems are usually dynamic
in nature, and the dynamics at a sub-system level can affect the dynamics of
the overall networked system [35], [133]. Consequently, the “task” assigned to
the networked system needs to be executed while ensuring that individual sub-
system dynamics and the overall networked system dynamics are stable1 in some
sense. A few examples wherein such a requirement is needed are:

1. In the scope of electrical grids, for example, instability in even a single
sub-system can lead to cascading failures [113], which are known to result
in economic losses [14].

2. Similarly, in the case of water distribution networks, failure/instability at
an individual sub-system level can have dire consequences [119].

Many additional examples are available in literature pointing to the fact that sys-
tem stability, both at individual sub-system and global levels, needs to be guar-
anteed depending on the task for which the network is designed [133], [134]. In
many scenarios, in addition to stability, important network properties need to be

1At this level of the presentation, we use the term “stable” in the sense of a desirable
convergence and boundedness of the dynamics at the sub-system and global levels. The formal
definition of stability will be given in later chapters.



6 Chapter 1. Introduction

guaranteed. One such complex networked systems property that is widely stud-
ied in neuroscience, systems biology, electro-chemistry, swarm robotics, sensor-
networks, controlled communication, etc., is synchronization, wherein as the
name suggests, individual sub-systems behave in a synchronous manner2 [7],
[101], [103], [109]. A few examples in which the synchronization property is
desired are:

1. In swarm robotics for instance, the synchronous behaviour in terms of coor-
dination in space and/or time is desirable in applications such as precision
agriculture, surveying, etc., [10].

2. In many networks of technological systems with communication protocols
between sub-systems, synchronized clocks are often used to coordinate and
control communication [61], [78], [109].

3. Cooperative behaviour among multi-agent dynamical systems, for example
in formation flights, robot cooperation in production lines, etc., depends
on exploitation of the synchronization property in networked systems [74].

While stability and synchronization can be viewed as distinct properties, in
many scenarios, it is important to ensure that both properties are preserved. A
few scenarios wherein both properties are important are:

1. A prime example of this can be found in the healthcare sector, wherein
networked systems are being used to perform remote physiological mea-
surements, and procedures [49], [85]. In such scenarios, the patient’s safety
relies on ensuring stability of every sub-system involved and having syn-
chronized systems for proper measurement of physiological data.

2. In coupled semiconductor laser arrays, which are widely used in many
photonics applications, it is required to maintain that each laser in the
array is stable and synchronized with each other [141].

Numerous similar examples can be found in [13], [100], [101] and the references
therein. The preservation of stable dynamics and synchronization properties
in networks of dynamical systems is a challenging topic that has attracted sci-
entific attention, with particular interest in various complexities arising in the
networked system at local and global levels. Among the different sources of com-
plexities, a peripheral view on some sources which are of interest in the scope of
this Ph.D. (related to stability and synchronization analysis) is listed as follows.

Generality of network topology

All the networked system examples mentioned previously can be related to the
generic topology shown in Figure 1.1. Moreover, each of the individual sub-
systems in such a generic topology could have its own complexity, with multiple

2Synchronization will be defined more precisely in Chapter 4.
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Sensor N-1

Plant

Controller

Sensor 1

Sensor 2

Sensor 3

Sensor N

Actuator 1

Actuator 2
Actuator 3

Actuator M-1

Actuator M

Communication Channel or Network

Figure 1.2: A generic representation of networked sensing and actuation in single
plant-controller setup with N sensors and M actuators. The plant-controller,
and controller-plant information transmission is via a communication channel.
In the scope of Figure 1.1, the individual sub-systems could have such a config-
uration and the communication channel could be shared with other subsystems
with similar configuration.

sensors and actuators leading to another sub-graph. In some cases, more specific
topologies can also be used in subsystems, such as the one depicted in Figure
1.2. These complexities in the network topology are known to have a correlation
with properties of the overall networked system dynamics, such as stability and
synchronization [32], [106]. It is therefore important that the theory that will be
developed, should be able to deal with generic network topologies, which makes
the stability and synchronization analysis challenging for such systems.

Variety in communication protocols and Quality-of-Service (QoS)

Communication-induced complexities also contribute towards the challenges in
analysing stability and synchronization properties. The sub-systems in Figure
1.1 are often connected via some form of dedicated or shared, and wired or wire-
less, communication channels/networks through which information needs to be
shared. Different types of communication channels and protocols, such as Try-
Once-Discard (TOD), Carrier Sense Multiple Access (CSMA), Time Division
Multiple Access (TDMA), IEEE Standard 802.5, etc., are employed depending
upon the task, see for example, [61], [133], [134] and the references therein. The
quality of service in such communication channels is viewed in terms of (1) the
maximum allowable transmission interval, i.e., the maximum time-interval be-
tween information transmission instants such that system properties (stability
and synchronization, for example) are still guaranteed, (2) the maximum al-
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lowable delay, which specifies the maximum delay in transmitted information
to reach its destination (controller, actuator, etc.) such that system properties
are still guaranteed, and (3) other constraints such as complex data scheduling
protocols, quantization, etc. While the use of communication networks help in
achieving global objectives, irrespective of the type of communication protocol
that is employed, the restrictions in terms of the quality of service are known
to impact stability and synchronization properties of the networked system [15],
[38], [53], [54], [123]. The impact also occurs due to asynchrony that is induced
in the networked system, which is detailed as the next source of complexity.
The challenge in this domain is to extend the theory of dynamical systems so as
to take into account the dynamics induced by communication networks due to
restrictions in quality of service.

Asynchronous Sensing and Actuation

Communication networks that are employed in large-scale networked systems
often have inherent effects such as sampling, delay, data-packet drop-outs, etc.,
which are known to affect information transmission, see for example, [54], [55],
[57] and the references therein. A simple method to handle these effects is to
consider them as asynchronous sensing and actuation in the networked system,
at the sub-system and global levels. The scientific community has focussed on
the impact of such asynchrony on the performance and stability of networked
systems. It has been established that asynchrony at the sub-system level between
sensors and actuators, for example, can scale to a global level [53], [55], [134].
A very common communication network induced effect, i.e., sampling, is known
to cause asynchrony between sensors and actuators even in the case of a single-
system within which the sensed information is transmitted via a communication
network, see [57] and the references therein. In the scope of large-scale networked
systems, such asynchrony occurs at the local sub-system level, which can lead
to asynchrony at a global system level. [42], [54], [55], [57], [128], [140].

The asynchrony induced by communication networks can lead to performance
loss in terms of stability, and destroy properties such as synchronization within
large-scale networked systems. Even in a single plant-controller setup, with mul-
tiple sensors and actuators as shown in Figure 1.2, the effects of asynchronous
information transmission on system stability have been evidenced in a multitude
of examples, see for example, [6], [53], [90], [107]. In the case of large-scale net-
worked systems, asynchrony caused by communication effects such as sampling
and delay are known to destroy synchronization properties in addition to sys-
tem stability. Sampling- and delay-induced asynchrony, for example, can render
networks of neuron models asynchronous and unstable [110], [123], [129], [140].
Motivated by such examples, it is important to study the degree of tolerance of
large-scale networked systems to communication network induced asynchrony,
such that stability and synchronization properties are preserved. From a scien-
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tific and engineering perspective, it is important to have tools that can be used
to guarantee that stability and synchronization properties are preserved, while
tolerating asynchrony in local and global levels of the networked system, arising
due to the communication network used within the system.

Nonlinearity

It is a known fact that most systems are nonlinear in nature, and their dynamics
can only be approximated by linear dynamics under stringent conditions [70]. In
some cases, the approximation may simply not be possible. Nonlinear systems
can exhibit complex behaviours such as multiple equilibria, oscillatory behaviour,
etc. [70]. In a networked setting, individual node dynamics could exhibit such
behaviour, which makes it challenging to analyse properties such as stability
and synchronization [82], [95], [104], [125], [134]. Consequently, in order to
consider global behaviour in the tools that are used to analyse networked system
properties, nonlinear models need to be taken into account, even at the sub-
system level.

As a consequence of the variety in the sources of complexity in the analysis
of stability and synchronization properties in networked systems, the tools to be
developed have to be as versatile as possible, i.e., it should be able to deal with
the most generic classes of effects that can come from the networked situation
of Figure 1.1. This leads to the high-level objective of this thesis.

High-level goal:

The main goal of this thesis is to provide versatile modelling and analysis tools for
stability and synchronization analysis in complex nonlinear networked dynamical
systems, while considering asynchronous communication within the network.

1.3 Existing Results: A brief overview

In this section, a high-level literature survey on stability and synchronization
analysis of networked dynamical systems is provided. Detailed literature surveys
on the individual topics are provided in the introductions of Chapter 2 and
Chapter 3 (for stability analysis), and Chapter 4 (for synchronization analysis).

For a few decades now, researchers have been interested in studying commu-
nication network effects and its impact in the scope of networked control systems
[22], [43], [58], [88], [121], [134]. Asynchrony induced by sampling and delay ef-
fects have previously been studied from centralized control system perspectives
[17], [46], [65], [84]. In stability analysis of systems subject to communication
network effects, the approaches available in literature that consider sampling-
and/or delay-induced asynchrony, are classified under the following four cate-
gories (see a detailed review in [57]):
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1. Time-delay approach: This approach, which was first introduced in [1],
[83], and popularized in [43], relies on modelling communication network
effects such as sampling as a time-varying delay (in addition to delay effects
induced by the communication network), see also [43], [116], [137].

2. Discrete-time approach: As the name suggests, this approach captures
the behaviour of the system at sampling instants, without considering the
inter-sample behaviour [56]. However, in the case of linear time-invariant
systems, it has been shown that asymptotic stability in continuous-time
is equivalent to asymptotic stability in discrete-time [45]. The approach
has been used for LTI systems [25], [26], [33], [137] and in some cases, for
nonlinear systems [99], [138].

3. Hybrid-systems approach: In this approach, the effects of communication
networks and related asynchrony are modelled using hybrid dynamical
models that include both continuous-time and discrete dynamics [19], [47],
[53], [89].

4. Input-Output approach: Classical robust control techniques inspired re-
searchers to model systems under communication network effects using
input-output models [46], [65], [81], [84]. The main idea of this approach
is to consider the effects of communication network as perturbations to a
nominal system.

In comparison to the first three approaches (see more details on them in [54],
[57] and the references therein), the input-output approach offers certain ad-
vantages that makes it more appealing from an engineering perspective. For
instance, this approach helps in clearly separating the continuous-time dynam-
ics of the system and the communication network effects such as sampling- and
delay-induced asynchrony [46], [65], [84]. Such a separation is interesting due to
the fact that numerous analysis results are available in literature for continuous-
time systems. The input-output framework also helps to easily include additional
nonlinearities, by treating them as operators represented by perturbations [51].
Additionally, this approach provides conditions for desired system properties in
the robust control framework, which is often preferred for engineering applica-
tions [2], [142]. Motivated by these advantages, in the scope of this thesis, we
will progress further in the direction of the input-output approach.

For generic closed-loop control systems that use robust and optimal control
methods, the input-output approach, which was first proposed in [112], [143],
is widely popular since it allows engineers to guarantee properties of the input-
output behaviour [145].

In the scope of systems subjected to communication network induced effects,
this approach was first used in the analysis of time-delay systems [63], [81] and
later adapted towards considering sampling induced asynchrony [37], [64], [93].
As mentioned previously, the main idea behind the input-output approach is to
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decouple the effects of communication network induced asynchrony into exoge-
nous perturbations acting upon the system under consideration, in the absence
of asynchrony [46], [65], [84].

For single-loop linear time-invariant (LTI) systems, in [46], [81], [84], the ex-
ogenous perturbations that capture the effects of non-uniform sampling or delay
in the communication network are characterized using an operator. The prop-
erties of the operator are then studied to provide a frequency-domain criterion
that guarantees stability of the single-loop system. However, in the case of LTI
systems, this approach has been used only in a few scenarios considering both
sampling- and delay-induced asynchrony.

For LTI systems with multiple sensors and actuators, in [39], the input-
output approach has been used to analyse stability, with each sensor-actuator
pair experiencing asynchrony induced by non-uniform sampling. In [17], [18],
the L2-stability3 of LTI systems with asynchronous sensors and actuators in dis-
tributed control settings is considered. Note that the result in [17], [18] only
provides boundedness of system solutions. In realistic scenarios, it is often de-
sirable to have additional performance guarantees on system dynamics. The
input-output approach has been used in [18], by considering a purely operator
based representation towards input-output analysis of large-scale systems with
sampling- and delay-induced asynchrony. However, in the scope of such sys-
tems with asynchronous sensing and actuation, there are no state-space based
frameworks that exploit the input-output approach. This is an interesting open
problem particularly due to the fact that in many engineering applications and
scientific studies, state-space formulations are used to model dynamical systems.
This problem is considered in this thesis.

Contrary to linear systems, input-output approaches for nonlinear systems
subject to communication network induced asynchrony have not received much
attention. In [93], [94], this framework was used to analyse the stability of non-
linear systems subject to aperiodic sampling in the communication network. By
combining the input-output framework with the notion of Dissipativity Theory
[50], [135], sufficient stability conditions that guarantee system stability in the
presence of aperiodic sampling were provided. Adapting this framework towards
considering both sampling- and delay-induced asynchrony, even in the scope of
single-loop nonlinear systems, is another open problem that is considered in this
thesis.

Analysis of network properties such as synchronization, in the presence of
asynchronous communication, has received considerably less attention. For net-
worked systems without any communication network effects, results guarantee-
ing synchronization properties are available in literature. The relation between
the underlying network topology and synchronization properties has been estab-
lished for large-scale networked systems with linear subsystems [139], and non-
linear subsystems [12], [103]. In [103], large-scale networks of nonlinear systems

3Details on L2-stability are given in later chapters and [131].
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that are diffusively coupled4 are considered, and the authors provide analysis
methods to study the synchronization or non-synchronization of the network in
terms of the underlying topology. Similar results that provide algebraic condi-
tions used to predict synchronization are also available in literature for linear
systems [20], [86], and nonlinear systems [82], [92], wherein only delay-induced
asynchrony is considered in the communication links. For large-scale networked
systems with linear coupling, researchers have shown that if two sub-systems
within the networked system synchronize for certain coupling gains, conditions
can be provided on the network topology such that the overall synchronization
property is guaranteed [11], [139]. In [5], conditions that govern the existence of
a synchronizer (coupling law) based on infinitesimal stabilizability of individual
sub-systems is provided. These conditions in turn guarantee the exponential
synchronization of the networked system. Results guaranteeing synchronization
in large-scale networked systems with heterogeneous sub-systems and linear cou-
pling have also been studied recently [3], [95]. Scenarios wherein the interaction
between sub-systems is governed by nonlinear coupling laws in the absence of
asynchronous information transmission, have also been considered in recent lit-
erature [97].

Synchronization analysis in large-scale nonlinear networked systems wherein
communication between subsystems is subject to channel-dependent delay, i.e.,
with each channel having a unique latency, has previously been considered in
[123]. In this reference, the authors analyse synchronization properties of large-
scale networks of semi-passive systems5 with diffusive coupling, and constant
delay-induced asynchrony between individual sub-systems. It is shown that for
identical sub-systems that are strictly semi-passive, sufficiently strong coupling
gains guarantee that synchronization property is preserved even in the presence
of constant delay-induced asynchrony. The approach in [123] was later extended
towards considering sampling-induced asynchrony in networked systems [110],
wherein the authors consider two strictly semi-passive systems that are diffu-
sively coupled and are subject to sampling induced asynchrony. However, the
sampling periods of the sensors in both sub-systems were considered to be same.
A similar setting with different, time-varying sampling intervals was consid-
ered in [130], and conditions guaranteeing exponential synchronization, based
on dissipativity properties of the networked system, were provided. The syn-
chronization analysis of large-scale networked systems with asynchrony induced
by different, time-varying sampling intervals is a challenging problem that has
not been studied.

4The definition of diffusive coupling is given in Chapter 4.
5The semi-passivity property is discussed in Chapter 4.
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Open Challenges:

Let us now summarize several open challenges that arise from the above litera-
ture survey, and form the basis for the research in this thesis. In the scope of
large-scale networked systems subject to communication network induced asyn-
chrony, the following open challenges are identified:

1. Using the input-output analysis framework, how can we guarantee system
stability and (transient) performance when information transmission, i.e.,
sensing and actuation are asynchronous over the communication network?
This problem is to be addressed for both single-loop and large-scale net-
worked systems.

2. How can important global properties of the networked system such as
synchronization be guaranteed in the presence of sampling- and delay-
induced asynchrony over the communication network?

In the context of the aforementioned open challenges, there are other challenges
that we do not focus on. For instance, asynchrony over the communication
network can also be due to phenomena such as event-triggered communications,
complex data-scheduling protocols, etc.

1.4 Research goals

Motivated by the open challenges formulated above, the main research goal of
this thesis is to develop an input-output modelling and analysis framework for
stability and synchronization analysis of large-scale networked systems subjected
to communication network induced asynchrony. To that end, the following re-
search (sub-)goals are recognized. Using the input-output framework, we aim
to:

1. Develop modelling and stability analysis tools for large-scale networked
linear dynamical control systems subjected to asynchrony induced by sam-
pling and delay, at local and global levels.

2. Develop modelling and analysis tools for single-loop nonlinear networked
control systems subjected to asynchronous sensing and actuation.

3. Develop modelling and analysis tools that guarantee stability and synchro-
nization properties within large-scale nonlinear networked control systems
subjected to asynchronous communication.

1.5 Contributions and Approaches

The aforementioned research goals have been accomplished in this thesis via the
following research contributions:
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1. A new modelling and frequency-domain based analysis approach, using
Integral Quadratic Constraints6, for stability analysis of large-scale de-
centralized linear networked control systems with asynchronous, aperiodic
sampling and delay.

The asynchronous networked system is represented by a feedback inter-
connection between a nominal continuous-time system representing the
dynamics of the networked linear system in the absence of any communi-
cation network induced effects, and an operator characterizing the effects of
asynchrony as perturbations (to the continuous-time system). The prop-
erties of the operator characterizing the perturbations are studied using
Integral Quadratic Constraints (IQCs) and frequency domain-based tools
are developed to guarantee stability of the asynchronous networked system.

2. A novel modelling and analysis approach based on dissipativity theory,
for stability analysis of single-loop nonlinear networked control systems
subject to asynchronous, aperiodic sampling and delay.

Similar to the approach used in solving research goal 1, as explained briefly
in research contribution 1, the nonlinear system is modelled as a feedback
interconnection between a system operator representing the nonlinear sys-
tem in the absence of any communication network induced asynchrony,
and an operator that captures the effects of communication network as
perturbations. Theoretical stability analysis techniques based on the no-
tion of dissipativity theory are developed. In particular, novel conditions
are provided for stability analysis in terms of dissipativity type proper-
ties of the associated continuous-time system, i.e., in the absence of any
communication network induced asynchrony, for which many results for
classes of nonlinear systems exist in literature. The developed conditions
aid in making trade-offs between control performance and the bounds on
sampling interval and delay.

3. A novel modelling and analysis approach for synchronization analysis of
generic multi-agent networked systems with directed, weighted, diffusive
coupling laws and asynchronous information transmission.

This contribution builds upon the dissipativity-based framework devel-
oped for solving research goal 2, as mentioned in research contribution
2. Novel conditions guaranteeing exponential synchronization of the net-
worked system are proposed in terms of dissipativity-type properties of
the associated synchronization problem in continuous-time, i.e., in the ab-
sence of any communication network induced asynchrony, for which many
results exist in literature. The developed condition aids in making trade-
offs between the coupling (gain) between sub-systems, and the bounds on
sampling intervals for each communication channel.

6Details given in Chapter 2.
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In the aforementioned contributions, state-space models have been used, and
the main source of novelty is the blending of techniques more typically seen in
purely input-output settings with a focus on exponential stability analysis.

1.6 Publications

The research contributions of this thesis have been published in the following
peer-reviewed journals and conference proceedings.

1.6.1 Peer-reviewed journal articles

Articles in preparation

� J. Thomas, E. Steur, C. Fiter, L. Hetel, and N. van de Wouw. “Exponen-
tial Synchronization of Networked Systems Under Asynchronous Sampled-
Data Coupling”, in preparation, 2021.

Published/Accepted articles

� J. Thomas, C. Fiter, L. Hetel, N. van de Wouw, and J. P. Richard.
“Frequency-Domain Stability Conditions for Asynchronously Sampled De-
centralized LTI Systems”, Automatica, in press, 2021.

� J. Thomas, C. Fiter, L. Hetel, N. van de Wouw, and J. P. Richard.
“Dissipativity-based Framework for Stability Analysis of Aperiodically
Sampled Nonlinear Systems with Time-varying Delay”, Automatica, in
press, 2021.

� D. Dileep, J. Thomas, L. Hetel, N. van de Wouw, J. P. Richard, and W.
Michiels. “Design of L2 stable fixed-order decentralised controllers in a
network of sampled-data systems with time-delays”, European Journal of
Control, Volume 56, Pages 73-85, November 2020.

1.6.2 Peer-reviewed articles in conferences and colloquia

� J. Thomas, E. Steur, C. Fiter, L. Hetel, N. Van De Wouw. “Exponential
Synchronization of Nonlinear Oscillators Under Sampled-Data Coupling”.
In proceedings of the 59th IEEE Conference on Decision and Control, Jeju
Island, Republic of Korea, December 2020.

� J. Thomas, E. Steur, L. Hetel, C. Fiter, J. P. Richard and N. van
de Wouw. “An Input-Output Approach Towards Synchronization Under
Communication Constraints”. 10th European Nonlinear Dynamics Con-
ference (ENOC 2020), Lyon, France, July 2020 (postponed to 2021).
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� J. Thomas, L. Hetel, C. Fiter, N. van de Wouw, and J. P. Richard.
“L2-Stability Criterion for Systems with Decentralized Asynchronous Con-
trollers”. In proceedings of the 57th IEEE Conference on Decision and
Control, Miami Beach, Florida, USA, December 2018.

� J. Thomas, C. Fiter, L. Hetel, N. van de Wouw, and J. P. Richard. “ Dis-
sipativity Based Stability Criterion for Aperiodic Sampled-data Systems
subject to Time-delay”. 5th IFAC Conference on Analysis and Control of
Chaotic Systems, Netherlands, October 2018.

1.6.3 Peer-reviewed workshop articles

� J. Thomas, L. Hetel, C. Fiter, N. van de Wouw, J. P. Richard. “Frequency
Domain Stability Criteria for Decentralized Systems with Asynchronous
Controllers”. 38th Benelux Meeting on Systems and Control, Lommel,
Belgium, March 2019.

� J. Thomas, L. Hetel, C. Fiter, N. van de Wouw, J. P. Richard. “Input-
Output Stability Analysis of Decentralized Systems with Asynchronous
Controllers”. JD/JN/Ecole MACS 2019 - Journées Nationales, Journées
Doctorales et Ecole du GdR MACS, Bordeaux, France, June 2019.

1.7 Thesis outline

The rest of this thesis is comprised of three parts and four chapters. Excluding
the last chapter, every chapter is a reprint of the published or submitted papers
mentioned in Section 1.6. All the chapters provide tools based on the input-
output analysis framework. Part II concerns the stability analysis and consists
of Chapters 2 and 3. Chapter 2 presents modelling and stability analysis tools
for decentralized linear time invariant systems, with aperiodic sampling and de-
lay induced asynchrony at local and global levels. In Chapter 3, modelling and
stability analysis tools are provided for single-loop nonlinear systems with sen-
sors and actuators subjected to sampling and delay induced asynchrony. Part III
concerns synchronization analysis, and is composed of Chapter 4, which provides
modelling and analysis tools for synchronization analysis of large-scale nonlinear
systems interconnected via a generic network topology and diffusively coupled
via asynchronous sampled-data coupling laws. Every chapter provides a detailed
outline of the chapter contents. Finally, in Part IV, Chapter 5, conclusions and
recommendations for future research are provided.



Part II

Networked Systems: Stability
Analysis





Chapter 2

Frequency-Domain Stability Conditions for
Asynchronously Sampled Decentralized LTI

Systems

This chapter deals with the exponential stability analysis of decentralized,
sampled-data, Linear Time Invariant (LTI) control systems with asynchronous
sensors and actuators. We consider the case where each controller in the de-
centralized setting has its own sampling and actuation frequency, which trans-
lates to asynchrony between sensors and actuators. Additionally, asynchrony
may be induced by delays between the sampling instants and actuation update
instants as relevant in a networked context. The decentralized, asynchronous
LTI system is represented as the feedback interconnection of a continuous-time
LTI system operator and an operator that captures the effects of asynchrony in-
duced by sampling and delay. By characterizing the properties of the operators
using small-gain type Integral Quadratic Constraints (IQC), we provide crite-
ria for exponential stability of the asynchronous, decentralized LTI state-space
models. The approach provided in this chapter considers two scenarios, namely
the ‘large-delay’ case and the ‘small-delay’ case where the delays are larger and
smaller than the sampling interval, respectively. The effectiveness of the proposed
results is corroborated by a numerical example.

This chapter is based on J. Thomas, C. Fiter, L. Hetel, N. van de Wouw, and J. P.
Richard. “Frequency-Domain Stability Conditions for Asynchronously Sampled Decentralized
LTI Systems”, Automatica, in press, 2021
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2.1 Introduction

Modern-day complex systems are hyper-connected with several wireless and
wired components that interact with controllers and actuators. In such sys-
tems, due to the large number of distributed sensors and actuators, implement-
ing a centralized control strategy is often not possible [9]. Decentralized control,
wherein controllers are assigned to individual sub-systems, is often employed in
such cases [8], [9]. Typical examples include Swarm Robotics, Vehicle Platoon-
ing, etc., [9], [102].

Implementing a decentralized control architecture provides certain advan-
tages. Large-scale systems, the complexity of which prohibits a centralized con-
troller design, are usually decoupled into subsystems. Consequently, the control
design problem becomes a local problem, in the sense that global performance
is achieved via local performance. Moreover, since the controllers are decou-
pled, diagnostics and maintenance tasks are easier. This results in overall lower
running costs [8], [9].

Sensors and actuators in a decentralized scheme are typically deployed over
aperiodic communication channels. However, local controllers are usually de-
signed using classical sampled-data techniques [9]. This fact, in turn, poses a
challenge in synchronization of different control system elements due to two main
reasons. First, at an implementation level, individual controllers are usually algo-
rithms programmed on embedded processors which work at different frequencies.
Secondly, individual communication channels over which the sensor-actuator
nodes are distributed, have unique network characteristics such as communi-
cation delay, sampling and actuation frequencies, etc. The resulting asynchrony
may in turn affect the overall performance of the system and even its stability.
In this chapter, this particular problem within the sampled-data implementation
of decentralized controls is considered. In other words, we study the effect of
asynchrony between local, possibly aperiodic, sampled-data controllers, on the
overall stability of the system. The significance of such an analysis is corrobo-
rated using the following example studied in [129]. Consider the decentralized
LTI system defined by

Σ1 ∶ ẋ1(t) = −2x1(t) − x2(t) + u1(t)

Σ2 ∶ ẋ2(t) = 4x2(t) − 2.8x1(t) + u2(t),
(2.1)

where u1(t) = −x̂1(t), u2(t) = −4.6x̂2(t) are the decentralized control inputs
to systems Σ1 and Σ2, respectively, and x̂1(t), x̂2(t) are the state values ob-
tained through sampling and hold. In the event that both systems Σ1 and
Σ2 are sampled periodically as well as synchronously with a sampling period
T = 0.59 (i.e., x̂i(t) = xi(kT ),∀t ∈ [kT, (k + 1)T ), i = {1,2}), the overall sys-
tem is asymptotically stable as illustrated in Figure 2.1a. However, as can be
observed from Figure 2.1b, the stability is compromised when the sampling is
periodic but control loops are asynchronous. Figure 2.1b presents the case when



2.1 Introduction 21

t
0 10 20 30 40 50 60

x
1
(t
),
x
2
(t
)

-3

-2

-1

0

1

2

3

x1(t)

x2(t)

(a)

t
0 5 10 15 20 25 30

x
1
(t
),
x
2
(t
)

×104

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x1(t)
x2(t)

(b)

Figure 2.1: (a) The decentralized LTI system (2.1) is stable for synchronous sam-
pling with T = 0.59. (b) Stability is lost when x2(t) is sampled asynchronously
with respect to x1(t) with a shift of δ = 0.2.

a shift δ = 0.2 is introduced in the sampling of the second state, i.e., when
x̂2(t) = x2(kT + δ),∀t ∈ [kT + δ, (k + 1)T + δ).

The stability problem can become even more complex when both the sensors
and actuators involved within individual control loops are asynchronous. In
this chapter, we provide novel methods for the stability analysis of LTI systems
with decentralized sampled-data linear controllers subject to asynchrony. The
asynchrony in question is attributed to the separate sampling and actuation
frequencies of each sensor and actuator node, as well as the delay induced in the
control loop by control computation and communication latencies.

Mathematical problem settings that are closely related to the one considered
in this chapter, have previously been studied [17], [30], [41], [132]. For example,
in the case of centralized controllers with aperiodic sampling and asynchrony
between sensors and actuators, stability analysis methods have been proposed
in [132]. However, the sampling and actuation frequencies were considered to
be constant, and same for all sub-systems. In [17], L2-stability was analyzed
for a distributed control system in which a single sensor transmits information
to two distributed controllers with asynchronous actuation. The sampling and
actuation scheme considered in [17] allows multiple samples to be overwritten
before a hold update occurs. In comparison, we assume that actuation events
are ordered. In [30], the asynchrony between sensors and actuators is controlled
to attain desired levels of system performance, via decentralized event-triggered
control. In this chapter, we check the robustness of a decentralized system
setting with respect to arbitrary asynchrony periods, implying that the time
elapsed between sampling and actuation instants is arbitrary.

In literature, stability analysis of sampled-data systems are broadly classi-
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fied into four approaches, namely the Time-delay, Discrete-time, Hybrid systems,
and Input-output approaches. An overview of these approaches can be found in
[57]. In this chapter, we focus on the input-output approach [81], which was
initially employed in the stability analysis of time-delay systems [44], [63], [65],
[66]. The general idea of the approach, in the context of sampled-data sys-
tems, is to take into account the effects of sampling as perturbations and model
it using operators. By studying these operators, powerful optimization-based
stability conditions can be derived using Integral Quadratic Constraints (IQC)
[81]. IQCs are inequalities that are used to exploit structural information about
perturbations, characterize properties of external signals, etc. They offer a gen-
eral framework for abstracting complex elements of dynamical system models
(nonlinearities, delay, time-varying elements, etc.) to rigorously analyse robust-
ness and performance using basic LTI models commonly employed in control
engineering applications. The main advantage of an IQC-type formulation is
its flexibility. Sampling is just one perturbation among others; the approach
can be easily extended to take into account other performance and robustness
specifications. In the case of LTI systems subject to aperiodic sampling or delay,
the input-output approach leads to simple frequency-domain characterisations,
which sometimes are model-free (measured frequency response functions) [65],
[84].

The stability analysis of sampled-data systems using the input-output ap-
proach relies on two distinct formulations. In the first one, a purely operator-
based formulation is considered, wherein the system is represented by operators
with zero initial conditions [17], [65], [84]. This formulation leads to L2-stability
conditions with respect to exogenous perturbations. Additionally, in this formu-
lation, non-linearities can be treated as operators represented by perturbations.
In the second type of formulation, state-space model representations with non-
zero initial conditions are considered [39], [93]. The robustness with respect to
asynchrony is then given in terms of exponential stability property. Contrary
to the first formulation, in this case, non-linear systems are handled by provid-
ing dissipativity type conditions on state-space models, using supply function
characterisation of operators [93], [128]. Both formulations mentioned here may
lead to similar stability conditions. Specifically, in the case of LTI systems, both
formulations lead to characterisation in terms of IQC. More closely related to
our problem formulation, IQC has previously been used in the L2-stability anal-
ysis of a single sensor-actuator system with aperiodic sampling [46], [84]. In
[44], it has been shown that L2-stability of a sampled-data system with respect
to exogenous perturbations also implies asymptotic stability of the equilibrium
of the state-space model. In [17], the L2-stability of a system in a distributed
control setting, with asynchrony between sensors and actuators, is addressed.
The result provided in [17], and earlier closely related works [37], [64], provide
IQCs along with gain bound characterizations of the kind considered in this
chapter. Additionally, in [17], only boundedness of the system solutions with
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respect to exogenous perturbations was established. However, in [17], [18], [37],
[64], richer characterizations that account for bounded gain, as well as passivity
properties of the operator characterizing network effects, have been provided.
The benefit of accounting for both gain bound and passivity properties has been
illustrated in [18]. In the general case, there are no results in literature that
provide relations between IQC formulations and exponential stability of asyn-
chronous sampled-data control systems. In this chapter, we bridge this gap
in the case of LTI systems with decentralized controllers, by providing general
exponential stability results based on bounded gain type IQC formulations.

The main contributions of this chapter are as follows. The major result is
an IQC-based framework for the exponential stability analysis of LTI state-
space models of decentralized sampled-data (networked) systems with asyn-
chrony. Novel aspects of this approach are detailed next. First, we propose
a preliminary result introducing a novel and general framework for representing
LTI state-space models of single-loop sampled-data systems with asynchronous
sensors and actuators, in the robust control framework, as an interconnection be-
tween a continuous-time LTI system operator and an operator that captures the
effects of asynchrony. Second, we apply this result to a generic class of LTI state-
space models of aperiodically sampled asynchronous decentralized systems, and
formulate small-gain type IQC conditions not only for L2-stability, but also for
exponential stability. For the sake of generality, we consider the sampling and
actuation intervals to be time-varying and possibly unknown (but bounded).
Third, we consider two relevant scenarios, namely the large-delay and small-
delay cases. As the name suggests, in the large-delay case, for individual control
loops in the decentralized setting, the actuation corresponding to a measured
(sampled) state could occur after the next sampling instant or instants. The
only restriction is that the actuation instants for each control loop occurs in an
order corresponding to the sampling instants. In this scenario, a single opera-
tor is used to capture the effects of asynchrony induced by sampling and delay.
The second scenario, namely the small-delay case, implies that the actuation
corresponding to a sampled state occurs before the next sampling instant. This
scenario has been studied in numerous theoretical as well as practical settings
(see [107], [134], [140]). For example, in [107], it was shown that in the case
of a single sensor sampling periodically, when the sampled data experienced
delays smaller than sampling-interval, the system was rendered unstable. The
problem becomes much more complex when multiple systems are involved, with
individual sensors and actuators having aperiodic, asynchronous sampling and
actuation. For such scenarios, we provide a less conservative criterion in compar-
ison to the criterion provided for the large-delay case, applied to the small-delay
case. This is achieved by capturing the effects of sampling-induced asynchrony
and delay-induced asynchrony, using two separate operators.

In [129], the Input-output approach has been used to provide easy-to-check
L2-stability conditions for a setting similar to the one considered in this chapter.
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However, the results in [129] only established boundedness and did not take
into account individual bounds on sampling and actuation frequencies, thereby
leading to considerably more conservative results. Here, in this chapter, we
propose a novel approach that guarantees exponential stability of the state-
space model by taking into account individual bounds on sampling and actuation
frequencies, which ensures that the results in this chapter are less conservative
and more generic in comparison to the results in [129].

The remainder of this chapter has been structured as follows. In Section 2.2,
we provide a preliminary result that provides a general framework for represent-
ing LTI systems with asynchronous sensors and actuators, as an interconnection
between a system operator and an operator capturing the effects of asynchrony.
In Sections 2.3 and 2.4, we provide small-gain IQC-type stability conditions
guaranteeing exponential stability of aperiodically sampled, decentralized, asyn-
chronous LTI systems. In Section 2.3, the criterion is provided for the large-delay
case, i.e., the transmission delay is larger than the sampling interval. In Section
2.4, a less conservative criterion is provided for the small-delay case, i.e., the
transmission delay is smaller than the sampling interval. Section 2.5 provides a
numerical example corroborating the results introduced in Sections 2.3 and 2.4.

Notations:

R is the set of all real numbers, implying Rn is the set of all n-dimensional real
vectors. N denotes the set of all natural numbers i.e., {0,1,2, . . . ,∞}. The no-
tation N⋆ is used to denote the set {N/{0}}. Diag(M1,M2, ...,Mn) is the block-
diagonal matrix with elements Mi, i ∈ {1,2, . . . , n}, of appropriate dimensions.
L2[a, b] is the L2-space of all square integrable and Lebesgue measurable func-
tions defined on the interval [a, b], with the L2-norm defined as ∥q∥2

L2
= ⟨q, q⟩,

and the inner product ⟨p, q⟩ = ∫
b
a p(s)

T q(s)ds. L2e[0,∞) is the extended L2-
space of all square integrable and Lebesgue measurable functions defined on the
interval [0,∞).

2.2 Preliminary Result

In this section, we provide a preliminary result on the remodelling of a generic
single-loop, LTI system with asynchronous sensors and actuators, as the feed-
back interconnection of a continuous-time system operator and an operator that
captures the effects of asynchrony. This result by itself bears significance in the
robust control framework, wherein feedback interconnections of system operators
are often considered. Consider the sampled-data LTI system defined by

ẋ(t) = Ax(t) +BKx̂(t) +w(t),

x(0) = x0,
(2.2)
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Figure 2.2: The feedback interconnection of G and ∆

where x ∈ Rn,w ∈ Ln2e[0,∞) and

x̂(t) =

⎧⎪⎪
⎨
⎪⎪⎩

xinit,∀t ∈ [0, a0)

x(sk),∀t ∈ [ak, ak+1), k ∈ N,
(2.3)

with xinit ∈ Rn being some constant initial value applied at the actuator level.
A,B andK are matrices of appropriate dimensions. The system under considera-
tion follows from an LTI system controlled by state feedback over a sampled-data
network with delay. The sampling sequence {sk}k∈N satisfying

sk+1 = sk + hk,∀k ∈ N, (2.4)

where the time-varying sampling interval hk satisfies 0 < h ≤ hk ≤ h̄,∀k ∈ N.
Similarly, the actuation sequence {ak}k∈N satisfies

ak = sk + τk,∀k ∈ N, (2.5)

where τk represents the asynchrony (delay) between sampling and actuation
instants and satisfies 0 ≤ τ ≤ τk ≤ τ̄ ,∀k ∈ N. In addition, the actuation instants
satisfy

ak ≤ ak+1,∀k ∈ N. (2.6)

Now consider the feedback interconnection of the form shown in Figure 2.2,
where the dynamics of G are given by

G∶

⎧⎪⎪
⎨
⎪⎪⎩

ż(t) = Aclz(t) +Bcluz(t) +w(t)

yz(t) = ż(t), z(0) = 0,w(t) ∈ L2e[0,∞),
(2.7)

where Acl = A +BK, Bcl = BK, z ∈ Rn, and

uz(t) = e(t) + g(t), (2.8)
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with g ∈ Ln2e[0,∞). The signal e(t) is given by

e(t) = (∆y)(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0,∀t ∈ [0, a0)

− ∫
t
sk
y(s)ds,∀t ∈ [ak, ak+1), k ∈ N,

(2.9)

where

y = yz + f, (2.10)

with f ∈ L2e[0,∞). In the following theorem, we provide conditions under
which the single-loop sampled-data LTI system (2.2)-(2.3) can be represented
using the feedback-interconnection of operators G and ∆, given by (2.7) and
(2.9), respectively. This theorem builds upon similar transformations given in
[17], [37], [46], [64]–[66], [84].

Theorem 2.1. Consider system (2.2),(2.3), the feedback-interconnection (2.7)-
(2.10), and sampling and actuation sequences satisfying (2.4) and (2.5), respec-
tively. Consider

η(t) = z(t) + eAcltx0, (2.11)

where z(t) follows the dynamics given by the interconnection (2.7)-(2.10), in
which f(t) = Acle

Acltx0 and

g(t) =

⎧⎪⎪
⎨
⎪⎪⎩

xinit − µ(t),∀t ∈ [0, a0)

0,∀t ≥ a0,
(2.12)

with µ(t) ∶ [0, a0)↦ Rn given by

µ(t) = eAtx0 + ∫

t

0
eA(t−τ)

(BKxinit +w(τ))dτ). (2.13)

Then, for x(t) given in (2.2), (2.3), we have

x(t) = η(t) = z(t) + eAcltx0, (2.14)

for all t ≥ 0.

Proof. From the definition of η(t) in (2.11), we have

η̇(t) = ż(t) +Acle
Acltx0. (2.15)

Substituting ż(t) from (2.7),

η̇(t) = Aclz(t) +Bcluz(t) +w(t) +Acle
Acltx0,

= Acl(z(t) + e
Acltx0) +Bcluz(t) +w(t).

(2.16)
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η̇ = Aη +BKuz +w

η(0) = x0

w

d
dt

∆+g

uz η

η̇ = ye

Figure 2.3: The feedback-interconnection used as an intermediate while tran-
sitioning from system (2.2),(2.3) to system (2.7)-(2.10), as shown in proof of
Theorem 2.1.

Substituting η as defined in (2.11), we have

η̇(t) = Aclη(t) +Bcluz(t) +w(t), (2.17)

with η(0) = x0, and uz(t) as given in (2.8). The system (2.17) has been shown
in Figure 2.3.

1) For t ∈ [0, a0): As per definition (2.9), we have e(t) = 0. Consequently, using

the definition of g(t) in (2.12),

uz(t) = g(t) = xinit − µ(t),∀t ∈ [0, a0). (2.18)

Hence, we have from (2.17)

η̇(t) = Aclη(t) +Bcl(xinit − µ(t)) +w(t). (2.19)

Note that the signal µ in (2.12), satisfies

µ̇(t) = Aµ(t) +Bclxinit +w(t), (2.20)

where Bcl = BK and µ(0) = x0. Therefore

µ̇(t) = Aµ(t) +Bclµ(t) −Bclµ(t) +Bclxinit +w(t),

= Aclµ(t) +Bcl(xinit − µ(t)) +w(t).
(2.21)

Comparing (2.19) and (2.21), since µ(0) = η(0) = x(0) = x0, and

ẋ(t) = Ax(t) +BKxinit +w(t),∀t ∈ [0, a0), (2.22)
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we have,
η(t) = µ(t) = x(t),∀t ∈ [0, a0). (2.23)

2) For t ≥ a0: From (2.12), we have g(t) = 0, for all t ≥ a0. Therefore, from the
definition of uz(t) in (2.8) and e(t) in (2.9), we have

uz(t) = e(t) = (∆y)(t),∀t ≥ a0. (2.24)

From the interconnection (2.7)-(2.10), we have

y(t) = yz(t) + f(t),

= Aclz(t) +Bcluz(t) +w(t) +Acle
Acltx0,

= Acl(z(t) + e
Acltx0) +Bcluz(t) +w(t),

= Aclη(t) +Bcluz(t) +w(t).

(2.25)

Therefore, from (2.17), we can conclude y(t) = η̇(t) for all t ≥ 0. Consequentially,
we have from (2.24),

uz(t) = e(t) = (∆η̇)(t) = η(sk) − η(t),∀t ∈ [ak, ak+1). (2.26)

This transformation of capturing the sampling- and asynchrony-induced effects
using an operator is based on similar works given in [17], [37], [46], [64]–[66],
[84]. By substituting (2.26) in (2.17), we have for all t ∈ [ak, ak+1),

η̇(t) = Aclη(t) +Bcl(η(sk) − η(t)) +w(t),

= Aη(t) +BKη(t) +BKη(sk) −BKη(t) +w(t),

= Aη(t) +BKη(sk) +w(t).

(2.27)

Comparing (2.27) with (2.2) and (2.3), and since η(a0) = x(a0) from (2.23), we
can conclude that

η(t) = x(t),∀t ≥ a0. (2.28)

Therefore, from (2.11), (2.23) and (2.28), we have

x(t) = η(t) = z(t) + eAcltx0,∀t ≥ 0. (2.29)

Remark : The goal of Theorem 2.1 is to show that system (2.2), (2.3) (with
non-zero initial conditions) can be represented in the form of system (2.7)-(2.10)
(with zero initial conditions) for particular signals f and g. To this end, we use
an intermediate feedback-interconnection model given in Figure 2.3, in which
system (2.2), (2.3) is represented as an interconnection between a nominal LTI
system (with state variable η) with non-zero initial conditions, and an operator
∆. This transformation is based on arguments previously used in [17], [37], [46],
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Figure 2.4: A decentralized controller setup example. Si and Hi, for all i ∈
{1,2, . . . ,M}, denotes the sample and hold components, respectively, for the ith

closed-loop.

[64]–[66], [84]. Next, an additional transformation is used to relate the model
in Figure 2.3 with the model (2.7)-(2.10), by deriving the appropriate signals f
and g that represent the initial conditions.

Based on Theorem 2.1, in the following section, we will remodel a generic
asynchronous, decentralized LTI system of the form shown in Figure 2.4, as a
feedback interconnection of the form shown in Figure 2.2.

2.3 Stability Analysis of Decentralized LTI System: Large-
delay Case

In this section, we deal with the decentralized problem setting shown in Figure
2.4, in the large-delay case. First, we introduce the mathematical description
of the problem setting. Constructive conditions are then given to analyse the
stability of the decentralized setting.

2.3.1 System description

Consider the decentralized system configuration shown in Figure 2.4, wherein
the dynamics of system Σi is given by

ẋi(t) = Aixi(t) +Biui(t) +
M

∑
j=1,i≠j

Aijxj(t),∀t ≥ 0, (2.30)

with i ∈ {1,2, ..,M}, xi(t) ∈ Rni , xi(0) = xi0 and ui(t) ∈ Rmi . The matrices Ai,Bi
and Aij are of appropriate dimensions. The term Aijxj(t) denotes the influence
of the states of the jth system Σj on the dynamics of system Σi. Here, we
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consider the case where the control of the global system is linear. Furthermore,
we assume that it is decentralized in the sense that the control input ui(t) only
depends on the local state variables xi(t).

Assumption 2.2. The decentralized system (2.30) with ui(t) = u
⋆
i (t) =Kixi(t),

is exponentially stable.

In the aforementioned assumption, Ki is a feedback matrix of appropriate
dimension. In this chapter, we consider that the control inputs are asynchronous.
The system states xi(t) are sampled according to a sampling sequence {sik}k∈N
defined by

{sik ∶ s
i
k+1 − s

i
k = h

i
k, k ∈ N, i ∈ {1,2, ..,M}}. (2.31)

The sequence of sampling intervals {hik}k∈N satisfying hik ∈ [hi, h̄i] takes into
account imperfection in sampling caused by, e.g., jitter, data packet dropouts,
etc. Note that the sampling instants of different systems are not necessarily
synchronous (hence the index i in sik). The control input ui(t) based on xi(s

i
k)

will be implemented at a time instant aik at the level of the actuator of system
Σi. We consider that the sequence of actuation times {aik}k∈N satisfies

{aik ∶ a
i
k = s

i
k + η

i
k, a

i
k ≤ a

i
k+1, k ∈ N, i ∈ {1,2, . . . ,M}}, (2.32)

where ηki ∈ [η
i
, η̄i] denotes the asynchrony between sensors and actuators. Such

an asynchrony may be due to network delays, control computational delay, etc.
Note that the constraint aik ≤ a

i
k+1 represents the large-delay case, wherein the

network delay ηik on the sampled state x(sik) can be greater than hik, but the
actuation instants stay ordered with respect to the sampling sequence. Without

loss of generality, we consider h̄i + η̄i ≤ a
i
0 ≤ a⋆0, where a⋆0 =

M
max
i=1

(h̄i + η̄i). Note

that in this chapter, the lower bounds on sampling and asynchrony, i.e., hi and
ηi, respectively, are used only to indicate that there are no accumulation points
(of transmitted information). However, as shown possible in other approaches
such as the Discrete-time approach or the Hybrid Systems approach, it could
be interesting to take into account the lower bounds in the stability analysis as
well. Based on this consideration, the control input to the system Σi is given by
the sampled-data decentralized static state-feedback law

ui(t) =

⎧⎪⎪
⎨
⎪⎪⎩

Kix
i
init,∀t ∈ [0, ai0),

Kixi(s
i
k),∀t ∈ [aik, a

i
k+1), k ∈ N,

(2.33)

with some constant value xiinit ∈ Rni . The main goal of this chapter is to pro-
vide exponential stability criteria for the decentralized LTI system (2.30)-(2.33),
uniformly with respect to the set of actuation and sampling instants.
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G +

f

∆+g

uz yz

ye

Figure 2.5: Standard feedback interconnection of two exemplary operators G
and ∆, which will be used to represent the decentralized system (2.30)-(2.33).

2.3.2 System reformulation

Using the result in Theorem 2.1 as a stepping stone, we illustrate in this section
how the decentralized system (2.30)-(2.33) can be represented by a feedback
interconnection of the form given in Figure 2.5. This representation is useful
in providing easy-to-check IQC-type stability criteria. The system (2.30)-(2.33)
can also be given by

ẋ(t) = Ax(t) +Bu(t),∀t ≥ 0, (2.34)

where

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 A12 . . . A1M

A21 A2 . . . A2M

⋮ ⋮ ⋱ ⋮

AM1 AM2 . . . AM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B = diag(B1,B2, . . . ,BM),

(2.35)

and
u(t) = [uT1 (t) uT2 (t) . . . uTM(t)]

T
, (2.36)

with ui(t) given by (2.33), for all i ∈ {1,2, . . . ,M}. Now consider a feedback
interconnection G −∆ of the form given in Figure 2.5, where the operator G is
defined by the dynamics

G∶

⎧⎪⎪
⎨
⎪⎪⎩

ż(t) = Ãclz(t) +Bcluz(t),∀t ≥ 0,

yz(t) = ż(t),
(2.37)

with z(t) = [zT1 (t), zT2 (t) . . . zTM(t)]
T

, z(0) = 0,

Ãcl =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1
cl A12 . . . A1M

A21 A2
cl . . . A2M

⋮ ⋮ ⋱ ⋮

AM1 AM2 . . . AMcl

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.38)
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and
Bcl = diag(B1K1,B2K2, . . . ,BMKM), (2.39)

with
Aicl = Ai +BiKi,∀i ∈ {1,2, . . . ,M}, (2.40)

and Aij , Ai, Bi, Ki for all j ∈ {1,2, . . . ,M}, j ≠ i given by (2.30). Let the input
uz be given by

uz(t) = e(t) + g(t), (2.41)

with g ∈ Ln2e[0,∞), and the signal e = ∆y such that

∆y =

⎛
⎜
⎜
⎜
⎝

∆1y1

∆2y2

⋮

∆MyM

⎞
⎟
⎟
⎟
⎠

, (2.42)

with ∆i analogous to (2.9), for all i ∈ {1,2, . . . ,M}, and

y = yz + f, (2.43)

where f ∈ Ln2e[0,∞). In the following theorem, we show how the system given
by (2.30)-(2.33), can be remodelled as the feedback interconnection of G and ∆
given by (2.37)-(2.43), i.e.,

y = Guz + f

uz = g + e,

e = ∆y,

(2.44)

by appropriately introducing the signals f and g.

Theorem 2.3. Consider system (2.34), (2.33), the feedback-interconnection
(2.37)-(2.43), and the sampling and actuation sequences satisfying (2.31) and
(2.32), respectively. Consider µ(t) = [µ1(t), µ2(t), . . . , µM(t)], where µi(t) ∶

[0, a⋆0)↦ Rn satisfies

µ̇i(t) = Aiµi(t) +Biu
i
µ(t) +

M

∑
j=1,i≠j

Aijµj(t),∀t ∈ [0, a⋆0), (2.45)

for all i ∈ {1,2, . . . ,M}, with µi(0) = x
i
0, a⋆0 = maxMi=1(a

i
0), and

uiµ(t) =

⎧⎪⎪
⎨
⎪⎪⎩

Kix
i
init,∀t ∈ [0, ai0),

Kiµi(s
i
k),∀t ∈ [aik, a

i
k+1) ∩ [0, a⋆0), k ∈ N,

(2.46)

with xiinit ∈ Rni , and

η(t) = z(t) + ∫
t

0
eÃcl(t−τ)ÃeÂτx0dτ + e

Âtx0, (2.47)
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Gi

wi

+

f̃i

∆i+gi

uiρ yiρ

yiei

Figure 2.6: The feedback interconnection of Gi and ∆i, representing the ith

closed-loop Σi −Ki.

for all t ≥ 0, where z(t) is given by the dynamics (2.37)-(2.43), Ãcl is given by
(2.38),

Â =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1
cl 0 . . . 0

0 A2
cl . . . 0

⋮ ⋮ ⋱ ⋮

0 0 . . . AMcl

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.48)

and Ã = Ãcl − Â. Then, for

f(t) = Ãcle
Âtx0, (2.49)

and g(t) = [gT1 (t) gT2 (t) . . . gTM(t)]
T

, defined by

gi(t) =

⎧⎪⎪
⎨
⎪⎪⎩

xiinit − µi(t),∀t ∈ [0, ai0)

0,∀t ≥ ai0,
(2.50)

we have that x(t) = η(t) for all t ≥ 0, where x(t) is given by (2.34),(2.33).

Proof. Consider the ith closed-loop Σi −Ki in Figure 2.4, given by (2.30)-(2.33).
We have

ẋi(t) = Aixi(t) +Biui(t) +wi(t),∀t ≥ 0, (2.51)

for all i ∈ {1,2, . . . ,M}, where

wi(t) =
M

∑
j=1,i≠j

Aijxj(t). (2.52)

By applying Theorem 2.1, the ith closed-loop Σi −Ki can be remodelled as the
feedback interconnection Gi −∆i shown in Figure 2.6, where the operator ∆i is
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given in a similar manner as defined in (2.9). The dynamics of system operator
Gi will be given by

ρ̇i(t) = A
i
clρi(t) +B

i
clu

i
ρ(t) +wi(t),∀t ≥ 0,

yiρ(t) = ρ̇i(t), ρi(0) = 0, i ∈ {1,2, . . . ,M}

Aicl = Ai +BiKi,B
i
cl = BiKi.

(2.53)

Also, the signals

f̃i(t) = A
i
cle

Aicltxi0, (2.54)

and

gi(t) =

⎧⎪⎪
⎨
⎪⎪⎩

xiinit − µi(t),∀t ∈ [0, ai0),

0,∀t ≥ ai0,
(2.55)

where µi(t) is generated by (2.45),(2.46). Then, as a direct application of The-
orem 2.1, for all i ∈ {1,2, . . . ,M}, the dynamics of the ith closed-loop Σi −Ki is
given by

xi(t) = ηi(t) = ρi(t) + e
Aicltxi0,∀t ≥ 0, (2.56)

and consequentially, from (2.52), we have

wi(t) =
M

∑
j=1,i≠j

Aij(ρj(t) + e
Aj
cl
txj0). (2.57)

Therefore, (2.53) gives

ρ̇i(t) = A
i
clρi(t) +

M

∑
j=1,i≠j

Aijρj(t) +B
i
clu

i
ρ(t) +

M

∑
j=1,i≠j

Aije
Aj
cl
txj0, (2.58)

for all i ∈ {1,2, . . . ,M}. From Figure 2.6, for the ith feedback interconnection
Gi −∆i, we have uiρ(t) = ei(t)+ gi(t), where gi(t) is given by (2.50) and ei(t) is
given using the operator ∆i, defined similarly as in (2.9), i.e.,

ei(t) = (∆iyi)(t) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0,∀t ∈ [0, ai0)

− ∫
t
si
k
yi(s)ds,∀t ∈ [aik, a

i
k+1), k ∈ N.

(2.59)

for all i ∈ {1,2, . . . ,M}. Additionally, for the ith feedback interconnection Gi−∆i

shown in Figure 2.6, we have

yi(t) = y
i
ρ(t) + f̃i(t), (2.60)

where yiρ(t) = ρ̇i(t), and f̃i(t) is given by (2.54).
Now, considering (2.56) for all i ∈ {1,2, . . . ,M}, we have

η(t) = ρ(t) + eÂtx0, (2.61)
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where η(t) = [ηT1 (t) ηT2 (t) . . . ηTM(t)]
T

, and Â is given by (2.48). From
(2.58), for all i ∈ {1,2, . . . ,M}, ρ(t) is given by the dynamics of the system

ρ̇(t) = Ãclρ(t) +Bcluρ(t) + Ãe
Âtx0,

yρ(t) = ρ̇(t), ρ(0) = 0,
(2.62)

where

Ã =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 A12 . . . A1M

A21 0 . . . A2M

⋮ ⋮ ⋱ ⋮

AM1 AM2 . . . 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.63)

and

ρ(t) = [ρT1 (t) ρT2 (t) . . . ρTM(t)]
T
,

yρ(t) = [(y1
ρ)
T (t) (y2

ρ)
T (t) . . . (yMρ )T (t)]

T
,

uρ(t) = [(u1
ρ)
T (t) (u2

ρ)
T (t) . . . (uMρ )T (t)]

T
,

x0 = [(x1
0)
T (x2

0)
T . . . (xM0 )T ]

T
.

(2.64)

In (2.62), the matrices Ãcl, Bcl and Â are given by (2.38), (2.39), and (2.48), re-
spectively. Moreover, from (2.56) and (2.61), the state evolution of the dynamics
of the decentralized system (2.30)-(2.33) is given by

x(t) = η(t),∀t ≥ 0. (2.65)

Additionally,

uρ(t) = e(t) + g(t), (2.66)

where g(t) = [gT1 (t) gT2 (t) . . . gTM(t)]
T

and

e(t) = [eT1 (t) eT2 (t) . . . eTM(t)]
T

= (∆y)(t),
(2.67)

with ∆ given by (2.42), y(t) = [yT1 (t) yT2 (t) . . . yTM(t)]
T

. From (2.60), we
have

y(t) = yρ(t) + f̃(t), (2.68)

where yρ(t) is given by (2.64), and from (2.54),

f̃(t) = [f̃T1 (t) f̃T2 (t) . . . f̃TM(t)]
T
= ÂeÂtx0. (2.69)

Therefore, the decentralized system given by (2.30)-(2.33), can be represented
by the feedback interconnection (2.62), (2.66), (2.67), and (2.68), as shown in
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Ĝ

φ

+

f̃

∆+g

uρ yρ

ye

Figure 2.7: The feedback interconnection of Ĝ and ∆, representing the decen-
tralized system (2.30)-(2.33).

Figure 2.7, where Ĝ describes the dynamics given by (2.62) and φ(t) = ÃeÂtx0.
Now, consider the system defined by

ż(t) = Ãclz(t) +Bcluz(t),

yz(t) = ż(t), z(0) = 0,
(2.70)

with uz(t) = uρ(t). Then, we have

z(t) = ∫
t

0
eÃcl(t−τ)Bcluz(τ)dτ,∀t ≥ 0. (2.71)

Similarly, from (2.62), we have

ρ(t) = ∫
t

0
eÃcl(t−τ)Bcluρ(τ)dτ + ∫

t

0
eÃcl(t−τ)φ(τ)dτ. (2.72)

Since uz(t) = uρ(t), using (2.71) and (2.72), we have

ρ(t) = z(t) + ∫
t

0
eÃcl(t−τ)φ(τ)dτ. (2.73)

Consequently, we have

ρ̇(t) = ż(t) + φ(t) + Ãcl ∫
t

0
eÃcl(t−τ)φ(τ)dτ. (2.74)

Therefore, we have
yρ(t) = yz(t) + f̂(t), (2.75)

where

f̂(t) = ÃeÂtx0 + Ãcl ∫
t

0
eÃcl(t−τ)ÃeÂτx0dτ. (2.76)
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Consequently, from (2.68), we have

y(t) = yz(t) + f̂(t) + f̃(t) = yz(t) + f(t), (2.77)

where
f(t) = f̂(t) + f̃(t)

= (Ã + Â)eÂtx0 + Ãcl ∫
t

0
eÃcl(t−τ)ÃeÂτx0dτ

= Ãcle
Âtx0 + Ãcl ∫

t

0
eÃcl(t−τ)ÃeÂτx0dτ.

(2.78)

Therefore, the feedback interconnection in Figure 2.7, can also be expressed as
the feedback interconnection shown in Figure 2.5, given by

y = Guz + f,

uz = g + e,

e = ∆y,

(2.79)

where the system operator G is defined by the transfer function of the system
given by (2.70), i.e.,

G(s) = Ãcl(sI − Ãcl)
−1Bcl +Bcl. (2.80)

Also, from (2.65) and (2.61), we obtain

x(t) = η(t) = ρ(t) + eÂtx0 = z(t) + ∫
t

0
eÃcl(t−τ)ÃeÂτx0dτ + e

Âtx0. (2.81)

Differentiating both sides of (2.65), and recalling that Ãcl = Ã + Â, we have

ẋ(t) = ż(t) +
d

dt
(eÃclt ∫

t

0
e−Ãclτ ÃeÂτx0dτ) + Âe

Âtx0

= yz(t) + Ãcle
Âtx0 + Ãcl ∫

t

0
eÃcl(t−τ)ÃeÂτx0dτ.

(2.82)

Therefore, from the definition of f(t) in (2.78), and (2.77), we have

ẋ(t) = yz(t) + f(t) = y(t). (2.83)

Remark : In the aforementioned theorem, it has to be noted that the operator
G is based on a system with zero initial condition. The signals µi(t), f(t) and
g(t) are merely used for replicating the evolution of the decentralized LTI system
with respect to the initial condition. This in turn leads to the construction of
the signal gi(t) that serves as an input to the feedback interconnection of G and
∆ given in Figure 2.5.



38
Chapter 2. Frequency-Domain Stability Conditions for Asynchronously Sampled

Decentralized LTI Systems

We have illustrated how the decentralized LTI system can be represented
by the feedback interconnection of a system operator G, and an operator ∆
that captures the effects of asynchrony. Feedback interconnections of this form,
shown in Figure 2.5, are often studied in the robust control framework. This
representation aids in providing simple L2-stability criteria as shown in [129]. See
Appendix 2.7.1 for a definition of L2 stability for the feedback interconnection
G − ∆. In the next section, we illustrate the implication of such L2-stability
properties on the exponential stability of the decentralized LTI system (2.30)-
(2.33).

2.3.3 Exponential stability criteria

Typically, by obtaining bounds on the operator ∆, results that establish L2-
stability properties of the feedback-interconnection G − ∆ are obtained [129].
However, in the following theorem, we provide a result that establishes expo-
nential stability of the system (2.30)-(2.33), based on boundedness properties of
the feedback interconnection G −∆ shown in Figure 2.5.

Theorem 2.4. Suppose that Ãcl, Â given by (2.38), (2.48), respectively, are
Hurwitz. Then, the decentralized system (2.30)-(2.33) is globally exponentially
stable if the feedback interconnection G −∆ defined by (2.44) is L2-stable.

Proof. The main idea of this proof is to use the particular signals f and g that
established the equivalence, as proven in Theorem 2.3, between the decentralized
LTI system (2.34), (2.33) and the feedback interconnection G-∆ given by (2.44),
to prove exponential stability. First, we shall compute bounds on f and g to
show that f, g ∈ Ln2e.

Boundedness of x(t) : Recalling the definition of f(t) in (2.49), we have,

f(t) = Ãcle
Âtx0 + Ãcl ∫

t

0
eÃcl(t−τ)ÃeÂτx0dτ. (2.84)

Therefore,

∥f(t)∥ ≤ (∥Ãcle
Ât

∥ + ∥Ãcl ∫
t

0
eÃcl(t−τ)ÃeÂτdτ∥) ∥x0∥, (2.85)

where ∥ ⋅ ∥ denotes the Euclidean norm, and is given by ∥f(t)∥ =
√
fT (t)f(t).

Since Â and Ãcl are Hurwitz, there exist constants c1, c2, α1 < 0 and α2 < 0 such
that

∥eÂt∥ ≤ c1e
α1t, ∥eÃclt∥ ≤ c2e

α2t,∀t ≥ 0. (2.86)

Consequently,

∥f(t)∥ ≤ (∥Ãcl∥c1e
α1t + ∥Ã∥∥Ãcl∥c1c2 ∫

t

0
eα2(t−τ)eα1τdτ) ∥x0∥

= (∥Ãcl∥c1e
α1t + ∥Ã∥∥Ãcl∥c1c2e

α2t
∫

t

0
e(α1−α2)τdτ) ∥x0∥.

(2.87)
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Since

∫

t

0
e(α1−α2)tdτ =

⎧⎪⎪
⎨
⎪⎪⎩

1
α1−α2

(e(α1−α2)t − 1), if α1 ≠ α2,

t, if α1 = α2,
(2.88)

we can state that
∥f(t)∥ ≤ (c3e

α1t + c4ζ(t))∥x0∥, (2.89)

where c3 = ∥Ãcl∥c1, c4 = ∥Ã∥∥Ãcl∥c1c2, and

ζ(t) =

⎧⎪⎪
⎨
⎪⎪⎩

1
α1−α2

(eα1t − eα2t), if α1 ≠ α2,

teα2t, if α1 = α2.
(2.90)

This implies that ∥f(t)∥ can be upper-bounded by an exponentially decaying
signal, i.e., f ∈ Ln2 [0,∞). Additionally lim

t→∞
f(t) → 0 and f ∈ Ln2e[0,∞). For the

remainder of the proof, Ln2 [0,∞) and Ln2e[0,∞) will be denoted by Ln2 and Ln2e,
respectively. Now, recalling the definition of g(t) in (2.50), and from (2.45),
since µ(t) is bounded for all t ∈ [0, a⋆0) owing to its linearity, we have that

g(t) is bounded for all t ∈ [0, a⋆0) and g(t) = 0,∀t ≥ a⋆0, with a⋆0 =
M

max
i=1

ai0.

Consequentially,

∫

∞

0
gT (t)g(t)dt = C2 <∞, (2.91)

implying that g ∈ Ln2 and g ∈ Ln2e. Since the feedback interconnection (2.44) is

L2-stable, i.e., the mapping [
f
g
]↦ [

y
uz

] is L2-stable, we have

∫

∞

0
(yT (θ)y(θ) + uTz (θ)uz(θ))dθ ≤ C ∫

∞

0
(fT (θ)f(θ) + gT (θ)g(θ))dθ <∞,

(2.92)
where the constant C > 0, implying that y, uz ∈ L

n
2 . We know from the definition

of the feedback interconnection (2.44), that yz = y − f , implying that since
y, f ∈ Ln2 , we have yz ∈ L

n
2 . As per definition of system operator G in (2.37), we

have
yz(t) = ż(t) = Ãclz(t) +Bcluz(t),∀t ≥ 0. (2.93)

Therefore, Ãclz(t) = yz(t)−Bcluz(t), and since Ãcl is invertible, we have z ∈ Ln2 .
Recalling Theorem 2.3, from (2.47), we have

x(t) = z(t) + ∫
t

0
eÃcl(t−τ)ÃeÂτx0dτ + e

Âtx0. (2.94)

We know that Â is Hurwitz implying lim
t→∞

eÂtx0 → 0. Additionally, the signal

∫
t

0 e
Ãcl(t−τ)ÃeÂτx0dτ ∈ L

n
2e, since it is the response of a stable LTI system to the

input ÃeÂτx0 ∈ Ln2 . Finally, since we have shown that z ∈ Ln2 , from (2.94), we
have x ∈ Ln2 .
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Exponential stability of x(t) : From Theorem 2.3, we know that the feedback

interconnection G − ∆ defined by (2.44) represents the decentralized system
(2.30)-(2.33), given by the homogenous state-space equation

ẋ(t) = Ax(t) +BKx̂(t), x(0) = x0, (2.95)

with x̂(t) = [x̂T1 (t) x̂T2 (t) . . . x̂TM(t)]
T

, where

x̂i(t) =

⎧⎪⎪
⎨
⎪⎪⎩

xiinit,∀t ∈ [0, ai0),

xi(t − τi(t)),∀t ∈ [aik, a
i
k+1), k ∈ N,

(2.96)

for all i ∈ {1,2, . . . ,M}, and

τi(t) = t − s
i
k,∀t ∈ [aik, a

i
k+1), k ∈ N. (2.97)

Based on the L2-stability of the feedback interconnection G−∆, we have proved
above that the solution x(t) of the homogeneous system (2.95)-(2.97) belongs
to Ln2 . In order to prove exponential stability of the equilibrium point x = 0, we
shall invoke the Bohl-Perron Principle given in [42], recalled in Appendix 2.7.2.
In accordance with the Bohl-Perron Principle, we shall prove that in the presence
of an additional disturbance belonging to Ln2 , the solution of the decentralized
system (2.95)-(2.97) belongs to Ln2 . To this end, consider the system

y⋆(t) = ẋ⋆(t) = Ax⋆(t) +BKx̂⋆(t) +w⋆(t), x⋆(0) = x0, (2.98)

with
x⋆(t) = [xT1⋆(t) xT2⋆(t) . . . xTM⋆(t)]

T
(2.99)

and
x̂⋆(t) = [x̂T1⋆(t) x̂T2⋆(t) . . . x̂TM⋆(t)]

T
, (2.100)

where

x̂i⋆(t) =

⎧⎪⎪
⎨
⎪⎪⎩

xiinit,∀t ∈ [0, ai0),

xi⋆(t − τi(t)),∀t ∈ [aik, a
i
k+1), k ∈ N,

(2.101)

for all i ∈ {1,2, . . . ,M}, and the disturbance w⋆ ∈ Ln2 . In a similar manner as
given in the proof of Theorem 2.3, the system (2.98), (2.101) can be shown to
be equivalent to the feedback interconnection given by

yz⋆ = Guz⋆ , uz⋆ = g⋆ + e⋆,

e⋆ = ∆y⋆, y⋆ = yz⋆ + (f⋆ +w⋆)
(2.102)

where g⋆ is given in a similar manner as shown in (2.50), i.e.,

gi⋆(t) =

⎧⎪⎪
⎨
⎪⎪⎩

xiinit − µi⋆(t),∀t ∈ [0, ai0),

0,∀t ≥ ai0,
(2.103)
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for all i ∈ {1,2, . . . ,M}, with µi⋆(t) defined by a duplicate system with dynamics
similar to that of (2.98), for all t ∈ [0, a⋆0), and

f⋆(t) =Ãcle
Âtx0 + Ãcl ∫

t

0
eÃcl(t−τ)ÃeÂτx0dτ

+w⋆(t) + Ãcl ∫
t

0
eÃcl(t−τ)w⋆(τ)dτ,

=f(t) +w⋆(t) + Ãcl ∫
t

0
eÃcl(t−τ)w⋆(τ)dτ.

(2.104)

where f(t) ∈ Ln2e is given by (2.84), and the disturbance w⋆ ∈ L
n
2 . Note that f(t)

also belongs to Ln2 . The term ∫
t

0 e
Ãcl(t−τ)w⋆(τ)dτ is the response of a stable

LTI system to the input w⋆ ∈ L
n
2 , which belongs to Ln2 . Consequently, we have

that f⋆ ∈ L
n
2 . Additionally, the solution of the non-homogeneous decentralized

system (2.98), (2.101) will be given by

x⋆(t) = z⋆(t) + ∫
t

0
eÃcl(t−τ)ÃeÂτx0dτ + ∫

t

0
eÃcl(t−τ)w⋆(τ)dτ + e

Âtx0, (2.105)

with z⋆ given by a system similar to (2.70), with the variables z⋆, yz⋆ and uz⋆
instead of z, y and uz, respectively. The aforementioned equivalence between
feedback interconnection (2.102) and system (2.98), (2.101) can be easily verified
by replacing wi(t) in (2.51) with wi(t)+wi⋆(t), and following the proof of The-
orem 2.3. Therefore, the ith closed-loop in the decentralized setting (with the
variable xi⋆) can be remodelled as the feedback interconnection given in Figure
2.6, but with the disturbance wi + wi⋆ on the operator Gi. Consequently, the
decentralized system can be remodelled in the form shown in Figure 2.7, but
with the disturbance φ + w⋆ on the operator Ĝ. Finally, by considering a sys-
tem similar to (2.70), with the variables z⋆, yz⋆ and uz⋆ instead of z, y and uz,
respectively, the equivalence between x⋆ and z⋆ given by (2.105), can be proved.

Since g⋆ ∈ L
n
2 and the feedback-interconnection G −∆ is L2-stable, we have

that yz⋆ , uz⋆ ∈ Ln2 . Therefore, we have proved that z⋆ ∈ Ln2 and consequently,
from (2.105), we have x⋆ ∈ L

n
2 . Now, since the solution of the non-homogeneous

decentralized system (2.98), (2.101), i.e., x⋆ ∈ L
n
2 , by virtue of Bohl-Perron Prin-

ciple, we can conclude that the equilibrium solution x = 0 of the homogeneous
decentralized system (2.95), (2.96), is globally exponentially stable.

Remark: In Theorem 2.4, the condition that both Ãcl and Â need to be Hur-
witz, imposes an easy-to-satisfy constraint that in the absence of sampling and
delay, the decentralized system (2.30)-(2.33) is asymptotically stable. However,
there are systems of the form (2.30) that cannot be stabilized by decentralized
state feedback, see [8].

Theorem 2.4 shows that in order to prove that the decentralized system
(2.30)-(2.33) is exponentially stable, it is enough to prove that the feedback-
interconnection G−∆ given by (2.44), is L2-stable. In the following section, we



42
Chapter 2. Frequency-Domain Stability Conditions for Asynchronously Sampled

Decentralized LTI Systems

will provide tractable numerical stability criteria that guarantees L2-stability of
the interconnection G −∆, by characterizing the properties of the operator ∆
given in (2.42) using an IQC. As such, these conditions also guarantee exponen-
tial stability of the decentralized system (2.30)-(2.33).

2.3.4 Bounded-gain IQC Characterization of Asynchrony Ef-
fect

In this section, we study the properties of the operator ∆ in (2.42), with ∆i

defined analogous to (2.9), and characterize its gain properties using an IQC. The
following lemma extends the result given in [65], to include an arbitrary number
of sensors and actuators. We provide the proof for the sake of completeness.

Lemma 2.5. Consider R = diag(R1,R2, . . . ,RM), with Ri ∈ Rni×ni , Ri = RTi >

0, for all i ∈ {1,2, . . . ,M}. Then, the operator ∆ defined by (2.42), with ∆i

defined analogous to (2.9), satisfies the IQC given by

∫

∞

0

[
y(t)
e(t)

]

T

[
S 0
0 −R

] [
y(t)
e(t)

]dt ≥ 0, (2.106)

where e = ∆y with y(t) given by (2.83), and

S = diag(γ2
1R1, γ

2
2R2, . . . , γ

2
MRM), (2.107)

with γi = h̄i + η̄i, for all i = {1,2, . . . ,M}.

Proof. The proof is given in Appendix 2.7.3.

The bounded gain type IQC characterizing the properties of operator ∆ can
now be used to establish L2-stability of the feedback interconnection G − ∆
defined by (2.44), as given in the following theorem. Consequently, as a result of
Theorem 2.4, the exponential stability of the decentralized system (2.30)-(2.33)
is then also guaranteed.

Theorem 2.6. Consider the decentralized system defined by (2.30)-(2.33), and
the transfer function

G(s) = Ãcl(sI − Ãcl)
−1Bcl +Bcl, (2.108)

where Bcl is given by (2.39). Suppose that Ãcl, Â given by (2.38), (2.48), re-
spectively, are Hurwitz. If there exists ε > 0 such that

[
G(jω)
I

]

T

Π [
G(jω)
I

] ≤ −εI, (2.109)
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is satisfied for all ω ∈ R, and

Π = [
S 0
0 −R

] , (2.110)

where
R = diag(R1,R2, . . . ,RM),Ri = R

T
i > 0, (2.111)

and
S = diag(γ2

1R1, γ
2
2R2, . . . , γ

2
MRM) (2.112)

with γi = h̄i+η̄i for all i ∈ {1,2, . . . ,M}, then, the origin is a globally exponentially
stable solution of the decentralized system (2.30)-(2.33).

Proof. From Lemma 2.5, we have that the operator ∆ satisfies the IQC defined
by Π. Consequently, by invoking the standard IQC Theorem [81], we have that

the mapping [
f
g
]↦ [

y
uz

] defined by the feedback interconnection G−∆ in (2.44)

is L2-stable if the condition (2.109) is satisfied. Then, as a direct application of
Theorem 2.4, since the feedback interconnection of G and (∆) is L2-stable, the
decentralized system (2.30)-(2.33) is exponentially stable.

Remark: By applying the Kalman-Yakubovich-Popov Lemma, we can infer
that the frequency-domain criterion given by (2.109) is equivalent to the exis-
tence of matrices P = PT > 0 and Ri = R

T
i > 0, such that the Linear Matrix

Inequality (LMI)

[
ÃTclP + PÃcl PBcl

BTclP 0
] + [

Ãcl Bcl
0 I

]

T

Π [
Ãcl Bcl
0 I

] < 0, (2.113)

where Π is given by (2.110), and where Ãcl, Bcl are given by (2.38), (2.39),
respectively, is satisfied. This condition can easily be checked using existing
LMI solvers. Algorithm 1 gives a peripheral idea on how this check can be done.
For a set of asynchronous sampling intervals and delays, the condition allows

Algorithm 1 Solving LMI (2.113)

1: Initialize matrices Ãcl, Bcl
2: Grid h̄i, η̄i over fixed limits with desired gridding interval.
3: for every (h̄i, η̄i) do
4: Solve (2.113) using LMI solvers for P , Ri.
5: if the obtained P > 0, and Ri > 0 then
6: (h̄i, η̄i) ensures exponential stability.
7: else discard the pair (h̄i, η̄i)

to validate system stability. This is shown via a numerical example in Section
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2.5. For a single system setting, when h̄1 = 0, the condition (2.113) recovers the
result given in [66]. Similarly, when η̄1 = 0, we recover the condition given in [84].
Richer IQC characterizations that account for passivity properties of operators
similar to ∆, in addition to the bounded gain properties, can be found in [17],
[18], [37], [64]. These characterizations could be useful in future work to derive
less conservative stability criteria.

2.4 Small Delay Case: Separation of ∆ operator

The large-delay case considered in Section 2.3 delineates scenarios commonly
arising in data transmission over shared networks, where delays can be con-
siderably longer than the sampling intervals. However, in a relevant subset of
practical scenarios, the delays can be guaranteed to be smaller than the sam-
pling interval. Such scenarios and its impact on the stability of systems has
previously been illustrated in [107]. It was shown that for an exemplary LTI
system, a specific sequence of alternating time delays, with the delay being less
than the sampling interval, induced instability in the system. In such scenarios,
the result presented in Theorem 2.6, i.e., for the large-delay case, can be applied.
However, since asynchrony effects are analysed in between actuation instants,
using a global operator, which does not distinguish between asynchrony induced
by sampling, and delay, the obtained results are conservative when adapted to
the small-delay case. In this section, we show how in the small-delay case, a dis-
tinction can be made between asynchrony induced by sampling and asynchrony
induced by delay, by considering two operators. This distinction also aids in ob-
taining less conservative results, when compared to the results obtained in the
large-delay case, adapted to the small-delay case. We proceed to provide a math-
ematical description of the decentralized setting (2.30)-(2.33), in the small-delay
case.

2.4.1 System description

In this section, we recall the decentralized sampled-data system (2.30)-(2.33).
In the small-delay case, it holds for the ith-loop in the decentralized setting that
the kth actuation instant occurs before the (k + 1)th sampling instant, i.e.,

ηik ≤ h
i
k,∀k ∈ N, i ∈ {1,2, . . . ,M}. (2.114)

Exploiting this more stringent requirement on the network, we proceed to provide
a criterion that is less conservative in comparison to the more generic criteria
given in Theorem 2.6, when applied to this small-delay case. As a stepping
stone, we consider two operators to characterize the effects of sampling and
delay separately, by adapting a similar formulation we have provided in [129].
The error due to sampling is given by

es(t) = [es1
T
(t) es2

T
(t) . . . esM

T
(t)]

T
, (2.115)
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where

esi (t) = (∆s
iyi)(t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0,∀t ∈ [0, ai0),

− ∫
t
si0
yi(θ)dθ,∀t ∈ [ai0, s

i
1),

− ∫
t
si
k
yi(θ)dθ,∀t ∈ [sik, s

i
k+1), k ∈ N⋆,

(2.116)

for all i ∈ {1,2, . . . ,M}. In a similar manner, the error induced on a sampled
signal due to delay, is given by

ed(t) = [ed1
T
(t) ed2

T
(t) . . . edM

T
(t)]

T
, (2.117)

where for all i ∈ {1,2, . . . ,M},

edi (t) = (∆d
i yi)(t) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0,∀t ∈ [0, si1),

− ∫
sik
si
k−1

yi(θ)dθ,∀t ∈ [sik, a
i
k), k ∈ N⋆,

0,∀t ∈ [aik, s
i
k+1), k ∈ N⋆.

(2.118)

2.4.2 Operator decomposition

In the following lemma, for the decentralized system (2.30)-(2.33) under the
constraint (2.114), we demonstrate the equivalence between the error captured
using a single operator, i.e., (2.59), and the error captured using two separate
operators, i.e., (2.116) and (2.118).

Lemma 2.7. Consider the operator ∆s given by

∆sy = (∆s
1y1 ∆s

2y2 . . . ∆s
MyM)

T
, (2.119)

where, for all i ∈ {1,2, . . . ,M}, the operator ∆s
i is defined by (2.116). Consider

the operator ∆d given by

∆dy = (∆d
1y1 ∆d

2y2 . . . ∆d
MyM)

T
, (2.120)

where, for all i ∈ {1,2, . . . ,M}, the operator ∆d
i is defined by (2.118). Then, for

the decentralized sampled-data system (2.30)-(2.33) under constraint (2.114),

(∆y)(t) = (∆sy)(t) + (∆dy)(t),∀t ≥ 0, (2.121)

where the operator ∆ = diag(∆1,∆2, . . . ,∆M), so that for all i ∈ {1,2, . . . ,M},
∆i is defined by (2.59).

Proof. Based on the structure of the operators ∆, ∆s, and ∆d, in order to prove
(2.121), it is sufficient to show that

(∆iyi)(t) = (∆s
iyi)(t) + (∆d

i yi)(t),∀t ≥ 0, (2.122)
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where ∆i is defined by (2.59).

For all t ∈ [0, ai0): From (2.116), (2.118), and (2.59), we have (∆s
iyi)(t) =

(∆d
i yi)(t) = (∆iyi)(t) = 0, implying

(∆s
iyi)(t) + (∆d

i yi)(t) = (∆iyi)(t),∀t ∈ [0, ai0). (2.123)

For all t ∈ [ai0, s
i
1): From the definition of ∆i in (2.59), we have

(∆iyi)(t) = −∫
t

si0

yi(θ)dθ,∀t ∈ [ai0, a
i
1) ⊃ [ai0, s

i
1). (2.124)

From (2.118), since (∆d
i yi)(t) = 0, for all t ∈ [ai0, s

i
1), using the definition of ∆s

i

in (2.116), (2.124) can be expressed as

(∆iyi)(t) = (∆s
iyi)(t) + (∆d

i yi)(t),∀t ∈ [ai0, s
i
1). (2.125)

For all t ∈ [sik, a
i
k), k ∈ N⋆: From (2.116) and (2.118), we have

(∆s
iyi)(t) + (∆d

i yi)(t) = −∫
t

si
k

yi(θ)dθ − ∫
sik

si
k−1

yi(θ)dθ,∀t ∈ [sik, a
i
k), k ∈ N

⋆

= −∫

t

si
k−1

yi(θ)dθ,∀t ∈ [sik, a
i
k), k ∈ N

⋆

(2.126)
From (2.59), under the condition (2.114), we have

(∆iyi)(t) = −∫
t

si
k

yi(θ)dθ,∀t ∈ [aik, a
i
k+1) ⊃ [sik+1, a

i
k+1), k ∈ N,

= −∫

t

sip−1
yi(θ)dθ,∀t ∈ [aip−1, a

i
p) ⊃ [sip, a

i
p), p ∈ N

⋆.

(2.127)

Therefore, (2.126) gives

(∆s
iyi)(t) + (∆d

i yi)(t) = (∆iyi)(t),∀t ∈ [sik, a
i
k), k ∈ N

⋆. (2.128)

For all t ∈ [aik, s
i
k+1), k ∈ N⋆: Using (2.116) and (2.118), we have,

(∆s
iyi)(t) + (∆d

i yi)(t) = −∫
t

si
k

y(θ)dθ,∀t ∈ [aik, s
i
k+1), k ∈ N

⋆. (2.129)

Now, from the definition of ∆i in (2.59), under constraint (2.114), we can state

(∆iyi)(t) = −∫
t

si
k+1

yi(θ)dθ,∀t ∈ [aik+1, a
i
k+2) ⊃ [aik+1, s

i
k+2), k ∈ N,

= −∫

t

sip

yi(θ)dθ,∀t ∈ [aip, a
i
p+1) ⊃ [aip, s

i
p+1), p ∈ N

⋆.

(2.130)
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Therefore (2.130) and (2.129) gives

(∆s
iyi)(t) + (∆d

i yi)(t) = (∆iyi)(t),∀t ∈ [aik, s
i
k+1), k ∈ N

⋆. (2.131)

Hence, from (2.122), (2.125), (2.128) and (2.131), we have

(∆s
iyi)(t) + (∆d

i yi)(t) = (∆iyi)(t),∀t ≥ 0. (2.132)

In a similar fashion as demonstrated in the large-delay case, we proceed to
characterize the properties of the operators ∆s and ∆d, given by (2.119) and
(2.120), respectively, using IQCs. By doing so, we can provide IQC conditions
that guarantee L2-stability of the feedback interconnection G-∆, with ∆ satis-
fying the decomposition (2.121).

2.4.3 Bounded-gain IQC Characterization

In this section, we characterize the properties of the operators ∆s and ∆d

using bounded gain type IQCs. The following lemma provides IQC conditions
on the operator ∆s, that characterizes the effects of asynchrony induced by
sampling and hold. The result given in this lemma is an extension of the results
provided in [76], [84], wherein a single-loop LTI system with aperiodic sampling
was considered.

Lemma 2.8. Consider Rs = diag(Rs1,R
s
2, . . . ,R

s
M), with Rsi ∈ Rni×ni , Rsi =

(Rsi )
T > 0, for all i ∈ {1,2, . . . ,M}. The operator ∆s defined by (2.119) satisfies

the Integral Quadratic Constraint (IQC) given by

∫

∞

0

[
y(t)
es(t)

]

T

[
Ss 0
0 −Rs

] [
y(t)
es(t)

]dt ≥ 0, (2.133)

where y is given by (2.83), es = ∆sy, and

Ss = diag((γ
s
1)

2Rs1, (γ
s
2)

2Rs2, . . . , (γ
s
M)

2RsM), (2.134)

with γsi =
2h̄i
π

, for all i = {1,2, . . . ,M}.

Proof. The proof is given in Appendix 2.7.4.

In a similar manner as shown in Lemma 2.8, in the following lemma, we
characterize the properties of the operator ∆d, that characterizes the effects of
asynchrony induced by delay, using an IQC.
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Lemma 2.9. Consider Rd = diag(Rd1,R
d
2, . . . ,R

d
M), with Rdi ∈ Rni×ni , Rdi =

(Rdi )
T > 0, for all i ∈ {1,2, . . . ,M}. The operator (2.120) satisfies the Integral

Quadratic Constraint (IQC) given by

∫

∞

0

[
y(t)
ed(t)

]

T

[
Sd 0
0 −Rd

] [
y(t)
ed(t)

]dt ≥ 0, (2.135)

where y(t) is given by (2.83), ed = ∆dy, and

Sd = diag((γ
d
1)

2Rd1, (γ
d
2)

2Rd2, . . . , (γ
d
M)

2RdM), (2.136)

with γdi =
√
h̄iη̄i, for all i = {1,2, . . . ,M}.

Proof. Consider the delay-induced error given by (2.118). We have,

∫

∞

si1

edi (t)
TRdi e

d
i (t)dt =

∞

∑
k=1
∫

sik+1

si
k

edi (t)
TRdi e

d
i (t)dt

=
∞

∑
k=1
∫

aik

si
k

edi (t)
TRdi e

d
i (t)dt,

(2.137)

since edi (t) = 0 for all t ∈ [aik, s
i
k+1), k ∈ N⋆. Since

edi (t) ∶= −∫
sik

si
k−1

yi(θ)dθ,∀t ∈ [sik, a
i
k), k ∈ N

⋆, (2.138)

by employing Jensen’s inequality, we obtain

edi (t)
TRdi e

d
i (t) ≤ h̄i ∫

sik

si
k−1

yi(θ)
TRdi yi(θ)dθ, k ∈ N

⋆. (2.139)

Using the bound (2.139), we have from (2.137) that

∫

∞

si1

edi (t)
TRdi e

d
i (t)dt ≤ h̄i

∞

∑
k=1
∫

aik

si
k

(∫

sik

si
k−1

yi(θ)
TRdi yi(θ)dθ)dt

= h̄iη̄i
∞

∑
k=1
∫

sik

si
k−1

yi(θ)
TRdi yi(θ)dθ

≤ h̄iη̄i ∫
∞

0
yi(t)

TRdi yi(t)dt.

(2.140)

Since edi (t) = 0 for all t ≤ si1, we have

∫

∞

0
edi (t)

TRdi e
d
i (t)dt = ∫

∞

si1

edi (t)
TRdi e

d
i (t)dt ≤ h̄iη̄i ∫

∞

0
yi(t)

TRdi yi(t)dt.

(2.141)
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G +

f

∆s +∆d+g

uz yz

ye

Figure 2.8: The feedback interconnection of G and ∆s +∆d, representing the
decentralized system (2.30)-(2.33).

Consequently, for all i = {1,2, . . . ,M}, we have

∫

∞

0

[
yi(t)
edi (t)

]

T

[
(γdi )

2Rdi 0
0 −Rdi

] [
y(t)
edi (t)

]dt ≥ 0, (2.142)

where γdi =
√
h̄iη̄i. Considering the integral quadratic constraint (2.142) for all

i ∈ {1,2, . . . ,M}, i.e., for the operator ∆s, we have

∫

∞

0

[
y(t)
ed(t)

]

T

[
Sd 0
0 −Rd

] [
y(t)
ed(t)

]dt ≥ 0, (2.143)

where

ed(t) = [ed1
T
(t), ed2

T
(t), . . . , edM

T
(t)]T ,

y(t) = [yT1 (t), yT2 (t), . . . , yTM(t)]T ,

Sd = diag((γ
d
1)

2Rd1, (γ
d
2)

2Rd2, . . . , (γ
d
M)

2RdM).

(2.144)

We have now characterized the properties of operators ∆s and ∆d using
IQCs. In a similar manner as shown in the large-delay case, this will be used to
provide tractable numerical conditions that guarantee L2-stability of the feed-
back interconnection G-∆, where ∆ satisfies the decomposition (2.121), and
ultimately global exponential stability of the decentralized system (2.30)-(2.33).

2.4.4 Exponential Stability Criterion

In this section, based on the IQCs characterizing operators ∆s and ∆d, we
establish the L2-stability of the feedback interconnection G−∆. By doing so, in
conjunction with Theorem 2.4, we are able to guarantee the exponential stability
of decentralized system (2.30)-(2.33).
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Theorem 2.10. Consider the decentralized system defined by (2.30)-(2.33), and
the transfer function

G(s) = Ãcl(sI − Ãcl)
−1Bcl +Bcl., (2.145)

where Bcl is given by (2.39). Suppose that Ãcl, Â given by (2.38), (2.48), re-
spectively, are Hurwitz. If there exists ε > 0 such that

[
G(jω)
I

]

T

Π̃ [
G(jω)
I

] ≤ −εI, (2.146)

is satisfied for all ω ∈ R, and

Π̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ss + Sd 0 0
0 −Rs 0
0 0 −Rd

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2.147)

with Ss, Sd given by (2.134), (2.136), respectively, Rs = diag(R
s
1,R

s
2, . . . ,R

s
M),

Rd = diag(Rd1,R
d
2, . . . ,R

d
M), so that Rsi = (Rsi )

T > 0, and Rdi = (Rdi )
T > 0 for

all i ∈ {1,2, . . . ,M}, then, the decentralized system (2.30)-(2.33) is globally ex-
ponentially stable.

Proof. Based on Lemma 2.7, since (∆y)(t) = (∆sy)(t) + (∆dy)(t),∀t ≥ 0, we
have that e(t) = es(t) + ed(t),∀t ≥ 0, where es(t) and ed(t) are given by (2.172)
and (2.144), respectively. Consequently, using the feedback interconnection G−

∆ given by Figure 2.5, we can represent the decentralized system (2.30)-(2.33)
by the feedback interconnection given in Figure 2.8. Additionally, using Lemmas
2.8 and 2.9, we have that ∆s +∆d satisfies the IQC given by

∫

∞

0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

y(t)
es(t)
ed(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T

Π̃

⎡
⎢
⎢
⎢
⎢
⎢
⎣

y(t)
es(t)
ed(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

dt ≥ 0, (2.148)

where Π̃ is given by (2.147). Therefore by invoking the IQC Theorem [81], we
can state that the feedback-interconnection of the operators G and (∆s+∆d) is
L2-stable if the IQC condition (2.146) is satisfied. Then, as a direct application
of Theorem 2.4, since the feedback interconnection of G and (∆s +∆d) is L2-
stable, the decentralized system (2.30)-(2.33) is exponentially stable.

Remark: By applying the Kalman-Yakubovich-Popov Lemma, we can infer
that the frequency-domain criterion given by (2.146) is equivalent to the exis-
tence of P = PT > 0, Rsi = (Rsi )

T > 0, Rdi = (Rdi )
T > 0, such that the LMI given

by

[
ÃTclP + PÃcl PB̄

B̄TP 0
] + [

Ãcl B̄
0 I

]

T

Π̃ [
Ãcl B̄
0 I

] < 0, (2.149)
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where Π̃ is given by (2.147), and B̄ = [Bcl Bcl], is satisfied. The matrices Ãcl
and Bcl are given by (2.38) and (2.39), respectively. The LMI (2.149) can be
solved in a similar manner as given in Algorithm 1.

2.5 Numerical Example

In this section, we consider again the motivating example given in the introduc-
tion, also studied in [129], and given by the matrices

A = [
−2 −1
2.8 4

] ,B = [
1 0
0 1

] ,K = [
−1 0
0 −4.6

] . (2.150)

One of the prime advantages of the results obtained in this chapter, compared
to the results in [129], is that the stability conditions introduced in this chapter
can be checked for any sampling and delay upper-bounds, for each sensor, indi-
vidually. In this example, we can therefore check the system’s stability for any
quadruplet (h̄1, h̄2, η̄1, η̄2). We will now illustrate as follows, how the results pro-
posed in this chapter aid in computing the feasibile values of individual sampling
interval bounds, i.e., h̄1 and h̄2, separately, for fixed delays. In Figure 2.9, we
show for instance, the stability domain obtained with fixed delay upper-bounds
η̄1 = η̄2 = 0.075.

The feasible values of h̄1 and h̄2 are computed for η̄1 = η̄2 = 0.075, in the large-
delay case (in blue) and the small-delay case (in red), and are shown in Figure
2.9. It is evident from the figure that the criterion proposed for the small-delay
case provides less conservative results, in comparison to the criterion introduced
for the large-delay case, but adapted to the small-delay scenario. The advantage
of the large-delay case, as mentioned previously, is that it allows for the delay
ηki , i ∈ {1,2}, k ∈ N, to be greater than the sampling interval hki , i ∈ {1,2}, k ∈ N,
for any feasible point (h̄1, h̄2) chosen in the blue feasibility region, as long as
the sampling and actuation instants satisfy the large-delay constraint given in
(2.32). On the contrary, for a feasible point (h̄1, h̄2) in the red feasibility region,
hki , i ∈ {1,2}, k ∈ N and ηki , i ∈ {1,2}, k ∈ N need to satisfy the more restrictive
small-delay constraint given by (2.114). A plot providing the feasible values of
h̄1 and h̄2, can also be obtained for fixed delay bounds with η̄1 ≠ η̄2.

In order to illustrate that the stability criteria proposed in this chapter are
less conservative compared to the criteria provided in [129], we study the max-
imum bound on sampling interval, so that h̄1 = h̄2, when delay bounds are set
to zero, i.e., η̄1 = η̄2 = 0. For the large-delay case, by virtue of Theorem 2.6, by
solving the LMI (2.113), we obtain h̄1 = h̄2 = 0.19, in comparison to a bound
of 0.18 obtained in [129]. Similarly, for the small-delay case, applying Theorem
2.10 by virtue of LMI (2.149), we obtain h̄1 = h̄2 = 0.31, whereas a bound of 0.27
was obtained in [129].

The example shown in this section gives an insight into how the tools pro-
posed in this chapter can be used to decide the trade-off between sampling-
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Figure 2.9: Feasible values of h̄1 and h̄2, when η̄1 = η̄2 = 0.075, for the large-delay
case (in blue) and the small-delay case (in red). For the small-delay case, the
bounds h̄1 < 0.075 and h̄2 < 0.075 are applicable only if the condition (2.114) is
satisfied.

interval bounds and delays, depending upon the system under consideration,
and the constraints imposed by the networked communication channel. As a
result, separate, effective sampling and actuation strategies can be employed on
individual sensors and actuators, respectively.

2.6 Conclusion

In this chapter, a novel, IQC based framework towards exponential stability anal-
ysis of state-space models of decentralized, sampled-data LTI control systems
with asynchronous sensors and actuators, is provided. As a preliminary result,
an approach is introduced to represent the state-space model of a single-loop LTI
system with asynchronous sensors and actuators, as an interconnection between
a continuous time system operator and an operator that captures the effects of
asynchrony. Consequently, by scaling this preliminary result, the decentralized,
sampled-data, asynchronous LTI state-space model under consideration, is re-
formulated as a feedback interconnection. By characterizing the properties of
the operator that captures asynchrony effects, using an IQC, stability results
on the feedback-interconnection, which imply global exponential stability of the
decentralized system, are provided. Two scenarios, namely the large-delay case
and the small-delay case, are considered. In the large-delay case, the effects of
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asynchrony induced by sampling and delay, are captured using a single opera-
tor. In contrast, these effects are captured using two separate operators in the
small-delay case. This leads to less conservative results, in comparison to the
result obtained in the large-delay case, when adapted to the small-delay case.
The effectiveness of the proposed results have been illustrated using a numerical
example. Although only bounded gain type IQCs have been considered in this
chapter, there are several richer characterizations such as anti-passivity proper-
ties, etc. of the operator capturing sampling and asynchrony effects that can be
considered [18], [46]. This can be useful in deriving less conservative results.

2.7 Appendix

2.7.1 L2 Stability of G −∆

The feedback interconnection G −∆ defined by (2.44) is said to be L2 stable if

∫

t

0
(yT (θ)y(θ) + uTz (θ)uz(θ))dθ ≤ C ∫

b

a
(fT (θ)f(θ) + gT (θ)g(θ))dθ <∞,∀t ≥ 0,

(2.151)
holds for any signals f, g ∈ L2[0, t] and constant C > 0. See [131] for a generic
definition of L2 stability and its implications.

2.7.2 Bohl-Perron Principle

If for p ≥ 1 and any f ∈ Lp[0,∞), the non-homogeneous system ẋ(t) =
m

∑
k=1

Ak(t)x(t−τk(t))+∫
h

0 Ad(t, θ)x(t−θ)dθ+f(t), x(s) = 0, s ∈ [−h,0],0 ≤ τk(t) ≤

τ̄ , with piecewise continuous delay τk has a solution x ∈ Lp[0,∞), and the con-
dition

sup
t≥0

[∣Ak(t)∣ + ∫
τ̄

0
∣Ad(t, θ)∣dθ] <∞,

holds, then the homogeneous system

ẋ(t) =
m

∑
k=1

Ak(t)x(t − τk(t)) + ∫
h

0
Ad(t, θ)x(t − θ)dθ,

x(s) = φ(s), s ∈ [−h,0], φ ∈ C[−τ̄ ,0],

is exponentially stable.

2.7.3 Proof of Lemma 2.5

Consider ei(t) defined using the operator ∆i given in (2.59). We have,

ei(t) = −∫
t

si
k

yi(θ)dθ,∀t ∈ [aik, a
i
k+1), k ∈ N. (2.152)
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By virtue of Jensen’s inequality, we can state

ei(t)
TRiei(t) = (∫

t

si
k

yi(θ)dθ)

T

Ri(∫
t

si
k

yi(θ)dθ)

≤ (t − sik)∫
t

si
k

yTi (θ)Riyi(θ)dθ,

(2.153)

and since t ∈ [aik, a
i
k+1), from (2.31), (2.32), we obtain

t − sik ≤ a
i
k+1 − s

i
k = s

i
k+1 + η

i
k+1 − s

i
k = h

i
k + η

i
k+1 ≤ h̄i + η̄i. (2.154)

Therefore,

ei(t)
TRiei(t) ≤ (h̄i + η̄i)∫

t

si
k

yTi (θ)Riyi(θ)dθ. (2.155)

Substituting θ = t + p and once again using the fact that t ∈ [aik, a
i
k+1), we have

ei(t)
TRiei(t) ≤ (h̄i + η̄i)∫

0

−(h̄i+η̄i)
yTi (t + p)Riyi(t + p)dp. (2.156)

Hence,

∫

∞

ai0

ei(t)
TRiei(t)dt ≤ (h̄i + η̄i)∫

∞

ai0

(∫

0

−(h̄i+η̄i)
yTi (t + p)Riyi(t + p)dp)dt

≤ (h̄i + η̄i)∫
0

−(h̄i+η̄i)
(∫

∞

ai0

yTi (t + p)Riyi(t + p)dt)dp,

(2.157)
where θ = t + p, implying θ → ∞ as t → ∞ and θ → ai0 + p as t → ai0. Since
ai0 ≥ h̄i + η̄i, p ∈ [−(h̄i + η̄i),0] and the integrand of the inner integral is the
positive term yTi (t + p)Riyi(t + p) = yTi (θ)Riyi(θ), we can upper bound the
aforementioned inequality by

∫

∞

ai0

ei(t)
TRiei(t)dt ≤ (h̄i + η̄i)∫

0

−(h̄i+η̄i)
(∫

∞

0
yTi (θ)Riyi(θ)dθ)dp. (2.158)

As per the definition of ei(t) in (2.59), since ei(t) = 0,∀t ∈ [0, ai0), we have

∫

∞

0
ei(t)

TRiei(t)dt = ∫
∞

ai0

ei(t)
TRiei(t)dt ≤ γ

2
i ∫

∞

0
yTi (t)Riyi(t)dt, (2.159)

with γi = h̄i + η̄i. Consequently, we have

∫

∞

0

[
yi(t)
ei(t)

]

T

[
γ2
iRi 0
0 −Ri

] [
yi(t)
ei(t)

]dt ≥ 0. (2.160)
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Note that γi is essentially the upper bound on the L2 induced norm of the
operator ∆i. Considering the integral quadratic constraint (2.160) for all i ∈
{1,2, . . . ,M}, i.e., for the operator ∆, we have

∫

∞

0

[
y(t)
e(t)

]

T

[
S 0
0 −R

] [
y(t)
e(t)

]dt ≥ 0, (2.161)

where
e(t) = [eT1 (t), eT2 (t), . . . , eTM(t)]T ,

y(t) = [yT1 (t), yT2 (t), . . . , yTM(t)]T ,
(2.162)

and S = diag(γ2
1R1, γ

2
2R2, . . . , γ

2
MRM).

2.7.4 Proof of Lemma 2.8

Consider the term
es

⋆
i (t) = (∆s⋆

i yi)(t),∀t ≥ 0, (2.163)

where

(∆s⋆
i yi)(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0,∀t ∈ [0, si0),

− ∫
t
si
k
yi(θ)dθ,∀t ∈ [sik, s

i
k+1), k ∈ N,

(2.164)

with yi(t) = ẋi(t),∀t ≥ 0. Therefore, we have

es
⋆
i (t) =

⎧⎪⎪
⎨
⎪⎪⎩

0,∀t ∈ [0, si0),

xi(s
i
k) − xi(t),∀t ∈ [sik, s

i
k+1), k ∈ N.

(2.165)

Consider the expression ∑
∞
k=0 ∫

sik+1
si
k

es
⋆
i

T
(t)Rsi e

s⋆
i (t)dt, where Rsi > 0 is a scaling

matrix. By virtue of the Wirtinger inequality [76], we can state

∞

∑
k=0
∫

sik+1

si
k

es
⋆
i

T
(t)Rsi e

s⋆
i (t)dt

≤
∞

∑
k=0

4(sik+1 − s
i
k)

2

π2 ∫

sik+1

si
k

d

dt
(es

⋆
i

T
(t))Rsi

d

dt
(es

⋆
i (t))dt.

(2.166)

Since sik+1 − s
i
k ≤ h̄i,∀k ∈ N, from (2.164), we have

∞

∑
k=0
∫

sik+1

si
k

es
⋆
i

T
(t)Rsi e

s⋆
i (t)dt ≤

4h̄2
i

π2 ∫

sik+1

si
k

d

dt
(es

⋆
i

T
(t))Rsi

d

dt
(es

⋆
i (t))dt

=
4h̄2

i

π2

∞

∑
k=0
∫

sik+1

si
k

d

dt
(∆s⋆

i yi)
T
(t)Rsi

d

dt
(∆s⋆

i yi)(t)dt

=
4h̄2

i

π2

∞

∑
k=0
∫

sik+1

si
k

yi(t)
TRsi yi(t)dt

≤
4h̄2

i

π2 ∫

∞

0
yi(t)

TRsi yi(t)dt.

(2.167)
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We have from (2.163) that es
⋆
i (t) = 0 for all t ≤ si0, implying

∫

∞

0
es

⋆
i

T
(t)Rsi e

s⋆
i (t)dt = ∫

∞

si0

es
⋆
i

T
(t)Rsi e

s⋆
i (t)dt ≤

4h̄2
i

π2 ∫

∞

0
yi(t)

TRsi yi(t)dt.

(2.168)

From (2.116) and (2.163), we have that esi (t) = e
s⋆
i (t) for all t ≥ ai0, and esi (t) = 0

for all t ≤ ai0, thereby implying

∫

∞

0
esi
T
(t)Rsi e

s
i (t)dt ≤ ∫

∞

0
es

⋆
i

T
(t)Rsi e

s⋆
i (t)dt ≤

4h̄2
i

π2 ∫

∞

0
yi(t)

TRsi yi(t)dt.

(2.169)
Consequently, for all i = {1,2, . . . ,M}, we have

∫

∞

0

[
yi(t)
esi (t)

]

T

[
γsi

2Rsi 0
0 −Rsi

] [
y(t)
esi (t)

]dt ≥ 0, (2.170)

where γsi = 2h̄i
π

. Considering the integral quadratic constraint (2.170) for all
i ∈ {1,2, . . . ,M}, i.e., for the operator ∆s, we have

∫

∞

0

[
y(t)
es(t)

]

T

[
Ss 0
0 −Rs

] [
y(t)
es(t)

]dt ≥ 0, (2.171)

where
es(t) = [es1

T
(t), es2

T
(t), . . . , esM

T
(t)]T ,

y(t) = [yT1 (t), yT2 (t), . . . , yTM(t)]T ,

Ss = diag((γ
s
1)

2Rs1, (γ
s
2)

2Rs2, . . . , (γ
s
M)

2RsM).

(2.172)



Chapter 3

Dissipativity-based Framework for Stability
Analysis of Aperiodically Sampled Nonlinear

Systems with Time-varying Delay

In this chapter, we provide novel conditions for stability analysis of aperiodically
sampled nonlinear control systems subjected to time-varying delay. The proposed
approach provides an estimate of the system decay rate and can deal with cases
in which delay is larger than the sampling interval. It is applicable to a general
class of nonlinear systems and provides sufficient criteria for stability that aid
in making trade-offs between control performance and the bounds on sampling
interval and delay. As a stepping stone, a preliminary and generic result based
on dissipativity, is introduced to analyse the exponential stability of a class of
feedback-interconnected systems. The nonlinear sampled-data system is remod-
elled to consider the effects of sampling and delay in the dissipativity framework,
as perturbations to the nominal closed-loop system. This leads to constructive
stability conditions for a continuous time closed-loop system given by the feed-
back interconnection of the nominal closed-loop system and an operator(s) that
captures the effects of sampling and delay. For Linear Time-Invariant (LTI) sys-
tems, we recover simple Linear Matrix Inequality (LMI) and frequency domain
conditions previously proposed in the robust control framework.

This chapter is based on J. Thomas, C. Fiter, L. Hetel, N. van de Wouw, and J. P. Richard.
“Dissipativity-based Framework for Stability Analysis of Aperiodically Sampled Nonlinear
Systems with Time-varying Delay”, Automatica, in press, 2021.
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3.1 Introduction

Currently, almost all sampled-data control systems are implemented numerically,
and embedded in a networked environment where data is exchanged between
sensors, controllers and actuators through digital communication channels [55],
[134]. Typical examples include mobile sensor networks, smart grids, automated
highway systems, etc., see [55].

However, in such control configurations, perturbing effects such as sampling
jitter, data-packet dropouts, delays, etc., are often introduced in the network
and this impacts the overall stability of the system [1], [46], [55], [57], [71], [134].
From the point of view of control theory, such phenomena are considered as
sampled-data systems with aperiodic sampling and/or time-varying delay, or
more generally, as Networked Control Systems (NCS) [134]. In this chapter,
we focus on the stability analysis problem for aperiodically sampled nonlinear
systems subjected to time-varying delay.

Existing literature provides various methods that deal with the stability anal-
ysis of sampled-data systems, with or without delay. An overview of different
approaches in the case of aperiodic sampled-data systems can be found in [57].
These approaches are broadly classified into four categories, i.e., the Time-delay
approach, the Discrete-time approach, the Hybrid systems approach, and the
Input-output approach. The Time-delay approach, has been largely used in the
context of Linear Time Invariant (LTI) systems [116]. One of the advantages of
this approach is that it can easily handle situations in which delay is greater than
sampling period [137]. However, it is usually difficult to make a differentiation
between sampling induced delay and actuation induced delay. The approach
has also been extended to nonlinear systems [68], [80]. The Discrete-time ap-
proach, has been used for stability analysis of LTI systems [26], [45], [137] and in
some cases, nonlinear systems [99], [138]. Since it is based on the exact system
discretization, it leads to very accurate numerical tools for stability analysis.
Additionally, inter-sampling behaviour has been taken into account only in the
case of LTI systems, see for example, [24]. Additionally, the application of such
discretization-based approach is challenging for general nonlinear systems and
for the large-delay case, see [79], [105]. The Hybrid system approach, was de-
veloped based on the fact that systems with sampling-and-hold in control and
sensor signals can be modelled using impulsive systems [53]. In the LTI systems
case, by using Impulsive Delay Differential Equations, situations when delay is
greater than the sampling interval was also studied [75]. However, for nonlinear
systems, the analysis has only been done for cases in which delay is less than
the sampling interval [15], [108].

The Input-output approach treats the error induced by sampling and/or delay
as a perturbation to the continuous-time control system and captures its effects
using an operator [65], [129]. This approach is intuitively simple to develop and
the stability analysis problem is related to the classical robust control framework
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[46], [84]. A primary advantage of this approach is that it can easily include per-
turbations as well as nonlinearities. However, in the case of LTI systems, this
approach has been used for stability analysis in the presence of sampling, and
delay, only separately. The existing results only provide L2-stability criteria for
LTI systems. Generally, it can be shown that this implies asymptotic stability of
the LTI sampled-data system. However, in such cases, it is difficult to describe
the system performance, even in terms of the transient decay-rate. In the case
of nonlinear systems, this approach has been employed to analyse stability only
in the case of aperiodic sampling in the absence of delay [93]. Providing con-
structive conditions for stability of nonlinear systems with aperiodic sampling
and time-varying delay is largely an open problem.

In this chapter, we provide a novel framework to analyse the stability of
aperiodically sampled nonlinear systems subjected to time-varying delay, using
an approach inspired from the notion of dissipativity [136]. We will extend
some arguments developed in Chapter 2. More specifically, instead of using
an IQC characterization, we will develop a supply function (in the context of
dissipativity theory) that satisfies an IQC property. The main contributions
of this chapter are as follows. We introduce a constructive approach that is
applicable to a general class of aperiodically sampled nonlinear systems with
time-varying delays, even in the scenario when delay is greater than the sampling
interval. We provide two tractable exponential stability conditions by taking into
account the specific discontinuities in delay, as well as inter-sampling and inter-
actuation behaviour. The dissipativity-based approach proposed in this chapter
leads to conditions in terms of dissipativity type properties of the associated
continuous-time system, for which many results for classes of nonlinear systems
exist in literature. Additionally, the approach provides bounds on operator(s)
characterizing sampling, hold and delay effects. The proposed results provide
an estimate of the system decay-rate, and also aid in deciding the trade-off
between system decay-rate, and the bounds on sampling interval and delay. As a
stepping stone, we introduce a primary result that provides exponential stability
conditions for a class of feedback interconnected systems, which bear relevance
to a range of problems in the robust control framework. The first criterion caters
to the so-called ‘large delay case’, which delineates the situation arising often
in information transmission over shared networks, where the delay introduced
to the data packet exceeds the sampling interval of the sensors. The second
criterion, a less conservative one, deals with the ‘small delay case’ where delay
is less than the sampling period. This scenario has been studied in numerous
theoretical as well as practical settings (see [24], [134], [140]). For example, in
[24], it was shown that in the case of a single sensor sampling periodically, when
the sampled-data experienced delays less than sampling-interval, the system was
rendered unstable. The problem becomes much more complex when the sensors
and actuators involved have aperiodic sampling and actuation frequencies. In
our analysis for the small-delay case, two separate operators are used to capture
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the effects of sampling and delay. In the case of LTI systems, we recover simple
LMI and frequency domain conditions previously proposed in the robust control
framework [65], [84].

The outline of this chapter is as follows. In Section 3.2, we introduce the
problem setting which comprises of a generic aperiodically sampled nonlinear
system subjected to time-delay. In Section 3.3, a preliminary stability result in
the exponential dissipativity framework is provided, for a class of feedback inter-
connected systems. Section 3.4 deals with the stability analysis of the nonlinear
sampled-data system under the large-delay case. It begins with a model reformu-
lation of the problem setting in terms of the feedback interconnection introduced
in Section 3.3. Next, the remodelled system properties are exploited to formu-
late a required supply function that will be used to provide a stability criterion
by employing the result introduced in Section 3.3. Section 3.5 introduces the
stability analysis of the nonlinear sampled-data system in the small-delay case,
and follows a similar outline as Section 3.4. In Section 3.6, examples are pro-
vided to corroborate the effectiveness of the proposed results in the nonlinear as
well as linear case. Finally, conclusions and an insight into possible future work
are given in Section 3.7. The proofs of the results introduced in this chapter, if
not given in the main body of the chapter, are given in the appendices.

Notations

Throughout the chapter, we denote R+ = {x ∈ R ∶ x ≥ 0}. The Euclidean
norm of a vector x ∈ Rn is denoted by ∥x∥. The derivative of a time-varying
vector z(t) ∈ Rn is given by the Dini derivative or upper right-hand derivative,

i.e., ż(t) ≜ limh→0+ sup z(t+h)−z(t)
h

. We denote Wn as the set of all piecewise
continuous n-dimensional functions over R+. The notation N⋆ is used to denote
the set {N/{0}}. The set of all continuously differentiable functions is denoted
by C1, and the set of all continuous functions are denoted by C0. The maximum
and minimum eigen values of a matrix M ∈ Rn×n are denoted by δmax and
δmin, respectively. The Euclidean norm of a matrix M is given by ∥M∥2 =
√
δmax(MTM).

3.2 Problem Statement

Consider the nonlinear system

ẋp(t) = f(xp(t)) + g(xp(t))u(t),∀t ≥ 0, (3.1)

with the nonlinear sampled-data control

u(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0, ∀t ∈ [0, a0),

κ(xp(sk)), ∀t ∈ [ak, ak+1), k ∈ N,
(3.2)
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where xp(t) ∈ Rnp is the system state vector, xp(0) = x
⋆
0 and u(t) ∈ Rmp is the

control input based on the continuous time signal

uc(t) = κ(xp(t)),∀t ≥ 0, (3.3)

subjected to sampling and delay. It is assumed that in the absence of sampling
and delay, the origin of system (3.1) with u(t) = uc(t), is exponentially stable.
The functions f ∶ Rnp ↦ Rnp with f(0) = 0, g ∶ Rnp ↦ Rnp×mp are globally
Lipschitz, and the function κ ∶ Rnp ↦ Rmp belongs to C1. The time instants
sk and ak specify the sampling instants (when sensors send the measured state
value to the controller) and actuation instants (when the control input is updated
at the actuator level) respectively. We consider a sampling sequence {sk}k∈N
satisfying

sk+1 = sk + hk,∀k ∈ N, (3.4)

where the time-varying sampling interval hk satisfies

0 < h ≤ hk ≤ h̄,∀k ∈ N. (3.5)

Similarly, we consider the actuation sequence {ak}k∈N such that

ak = sk + τk,∀k ∈ N, (3.6)

where τk is the time-varying delay between sampling and actuation instants and
satisfies

0 ≤ τ ≤ τk ≤ τ̄ ,∀k ∈ N. (3.7)

Hypothesis 1: The actuation instants satisfy

ak < ak+1,∀k ∈ N. (3.8)

This assumption allows the bound on delay, τ̄ , to be greater than the bound on
sampling interval, h̄, but under the constraint that the actuation instants occur
in an order corresponding to the sampling instants. Without loss of generality,
we consider that the first actuation occurs at time a0 = τ̄ + h̄, while the first
sampling instant is s0 = a0 − τ0. This assumption can also be ensured with a
time-scale shift. Throughout the chapter, P denotes the nonlinear closed-loop
sampled-data system defined by (3.1), (3.2), (3.4)-(3.8). The objective of this
chapter is to analyse the exponential stability of the system P.

3.3 Preliminary Generic Stability Result

In this chapter, we will use the fact that system P can be remodelled as the
feedback-interconnection given by

Σ ∶

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = f̄0(x(t))

y(t) = h̄0(x(t))
}∀t ∈ [0, a0),

ẋ(t) = f̄(x(t)) + ḡ(x(t))ω(t)

y(t) = h̄(x(t)) + l̄(x(t))ω(t)
}∀t ≥ a0,

(3.9)
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with x(t) ∈ Rn, ω(t) ∈ Rm, y(t) ∈ Rp, x(0) = x0, and the operator ∆ ∶Wp ↦Wm

such that
ω = ∆y. (3.10)

The function f̄0 in (3.9) is considered to be globally Lipschitz, with a Lipschitz
constant k0 and f̄0(0) = 0. Additionally, we consider that the functions f̄ , ḡ, h̄
and l̄ are sufficiently smooth. We assume that solutions exist for the feedback
interconnection Σ−∆. We shall denote the feedback interconnection (3.9)-(3.10)
by Σ − ∆. Such interconnection models will be introduced in Sections 3.4 and
3.5, wherein the functions introduced in (3.9) will also be detected. This will
also establish the relation between the dimensions n introduced in (3.9) and
np introduced in (3.1). Prior to presenting such models, we will formulate, a
technical result concerning exponential stability of Σ −∆. This result will serve
as a stepping stone for the stability analysis of systems of the form (3.1), (3.2),
(3.4)-(3.8).

Theorem 3.1. Consider the feedback interconnection Σ − ∆ and the following
assumptions:
Assumption 1: There exists a supply function S ∶ R+ ×Rp ×Rm ↦ R continuous
in all parameters satisfying the integral constraint

∫

t

0
S(θ, φ(θ), (∆φ)(θ))dθ ≤ 0,∀t ≥ 0, φ ∈Wp. (3.11)

Assumption 2: There exists a continuously differentiable storage function V ∶

Rn ↦ R+ and scalars 0 < c1 < c2, and q > 0 such that

c1∥x∥
q
≤ V (x) ≤ c2∥x∥

q. (3.12)

Assumption 3: There exist scalars λ ∈ R and ρ > 0 such that the inequalities

− S (t, y(t), ω(t)) ≤ ρV (x(t)),∀t ∈ [0, a0), (3.13)

V̇ (x(t)) ≥ λV (x(t)), t ∈ [0, a0), (3.14)

and
V̇ (x(t)) + αV (x(t)) ≤ e−α(t−a0)S (t, y(t), ω(t)) ,∀t ≥ a0, (3.15)

are satisfied for some α > 0, along the solutions of the system Σ −∆.
Then Σ −∆ is exponentially stable with a decay-rate of at least α/q, i.e.,

∃δ > 0 ∶ ∀t ≥ 0, ∥x(t)∥ ≤ δe
−α
q t∥x(0)∥. (3.16)

Proof. The proof is given in Appendix 3.8.1.

Inequality (3.15) is motivated from the notion of exponential dissipativity
introduced in [21], wherein exponentially weighted storage and supply functions
were used to establish exponential stability conditions for nonlinear dynamical
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systems. The aforementioned theorem is a general result for stability analysis of
feedback interconnected systems of the form Σ −∆. However, it also applies to
the robustness analysis of systems subjected to various perturbations that can
be modelled by an operator of the form (3.10).

Remark: If the assumptions in Theorem 3.1 only hold locally, the results
can be extended easily in a manner similar to the one shown in [93], so that
the conditions hold in a compact set containing the origin. Note that the result
provided in [93] holds only for scenarios with aperiodic sampling alone. Theo-
rem 3.1 generalizes the result in [93] by taking into account a general class of
perturbation characterizing the effects of sampling and delay.

In order to make Theorem 3.1 constructive, a manner to construct the supply
function S needs to be provided. This can be done in part by analytical study
of the operator ∆. In Sections 3.4.2 and 3.5.2, we show how this supply function
can be characterized for the case where the operator ∆ characterizes sampling
and delay effects. The following sections explain how Theorem 3.1 allows for
building robust stability critera for the nonlinear sampled-data system P. In
Section 3.4, we consider the large delay case given by Hypothesis 1, i.e. (3.8).
Similarly, in Section 3.5, we provide stability conditions for the small delay case,
given by τk < hk,∀k ∈ N.

3.4 Stability Analysis for the Large Delay Case

In this section, we provide a constructive approach for applying Theorem 3.1 to
analyse the stability of system P introduced in Section 3.2. The term ‘large de-
lay’ signifies Hypothesis 1, which implies that the delay τk can indeed be greater
than the sampling interval hk, under the constraint that the actuation instants
occur in order. Theorem 3.1 can be used in this scenario by reformulating the
system P as an interconnection of the form Σ −∆ given by (3.9)-(3.10), so that
the effects of sampling and delay are included as a perturbation. In order to do
so, we define the perturbation induced by sampling and delay as

e(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0,∀t ∈ [0, a0),

κ(xp(sk)) − κ(xp(t)),∀t ∈ [ak, ak+1), k ∈ N.
(3.17)

For all t ≥ a0, e(t) can be interpreted as the ‘error’ on the control action when
compared to a continuous time controller as given in (3.3). We will introduce
an operator ∆ that helps in expressing the error e(t) in an alternate manner.
Additionally, we provide the functions introduced in (3.9), so that the dynamics
of the interconnection Σ −∆ and the sampled-data system P are equivalent.

3.4.1 System Model Reformulation

In this section, we introduce a particular case of operator ∆ in (3.10), with m =

p =mp, that captures the perturbation (3.17). Subsequently, the system P given
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by (3.1), (3.2), (3.4)-(3.8) is reformulated in terms of a feedback interconnection
of the form Σ −∆ in (3.9), (3.10).

Lemma 3.2. Consider the operator ∆ ∶ Wmp ↦ Wmp defined for any signal
z ∈Wmp as

(∆z)(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0,∀t ∈ [0, a0),

− ∫
t
sk
z(s)ds,∀t ∈ [ak, ak+1), k ∈ N,

(3.18)

and the derivative of the continuous control in (3.3),

u̇c(t) =
d

dt
κ(xp(t)). (3.19)

Then, the sampling and delay induced error e defined in (3.17) can be expressed
as e = ∆u̇c.

Proof. The proof is given in Appendix 3.8.2.

We show next how the sampled-data system P can be remodelled in the
format Σ−∆ given by (3.9), (3.10). This formulation in conjunction with Lemma
3.2 is used to prove the equivalence between the sampled-data system P and the
interconnection Σ −∆.

Lemma 3.3. Consider the system Σ in (3.9), with

f̄0(x) = f(x), h̄0(x) =
∂κ(x)

∂x
f̄0(x),

f̄(x) = f(x) + g(x)κ(x), ḡ(x) = g(x),

h̄(x) =
∂κ(x)

∂x
f̄(x), l̄(x) =

∂κ(x)

∂x
ḡ(x),

(3.20)

n = np, m = p = mp, x0 = x⋆0 and the operator ∆ in (3.10), defined by (3.18).
Then, system P can be expressed as the feedback interconnection Σ−∆ in (3.9),
(3.10), with x = xp.

Proof. The proof is given in Appendix 3.8.3.

Remark : Modelling system (3.1), (3.2) in the form of (3.9), (3.10) implies
adding an artificial output y, that will correspond to the derivative of the
continuous-time control input, as given in (3.19).

Lemmas 3.2 and 3.3 will be used to provide constructive stability conditions
for the system P. In the following section, as a prerequisite for this development,
the properties of ∆ in (3.18) are exploited to provide a supply function S that
satisfies the assumptions in Theorem 3.1.
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3.4.2 Stability Analysis

In this section, we characterize the properties of ∆ by a supply function S
satisfying assumption (3.11).

Lemma 3.4. Consider ∆ defined in (3.18), α ∈ R+ and R ∈ Rmp×mp with
R = RT > 0. Then, for all z ∈Wmp ,

∫

t

0
S (θ, z(θ), (∆z)(θ))dθ ≤ 0, ∀t ≥ 0, (3.21)

where the function S ∶ R+ ×Rmp ×Rmp ↦ R is defined by

S ∶ (θ, v,w)↦ eα(θ−a0) (wTRw − γ2vTRv) , (3.22)

with γ2 = (h̄ + τ̄)2eα(h̄+τ̄).

Proof. The proof is given in Appendix 3.8.4.

The result presented in Lemma 3.4 holds for any symmetric positive definite
matrix R characterizing the supply function. Note that when α = 0, the condition
(3.21) can be related to the IQC introduced in Lemma 2.5. This relates to the
so-called hard and soft IQC factorizations, see [114]. For the function S in (3.22),
we can see that the condition (IQC) (3.21) is not only a soft IQC factorization
but also a hard IQC factorization in the sense that it holds for the interval [0, t)
and also for the interval [0,∞). The following Theorems 3.5 and 3.6, provide
tools to tune the matrix R. The supply function given by (3.22), together with
Lemmas 3.2 and 3.3, can now be used to provide stability conditions for the
sampled-data system P.

Theorem 3.5. Consider system P in (3.1), (3.2), (3.4)-(3.8), the interconnec-
tion Σ − ∆ given by (3.9), (3.10), (3.18) and (3.20). If there exists a supply
function S of the form (3.22) and a storage function V ∶ Rn ↦ R+ that satisfy
assumptions (3.12), (3.13), (3.14) and (3.15), then system P is exponentially
stable with a decay-rate α/q.

Proof. First, we exploit Lemma 3.3 to show the equivalence between P in (3.1),
(3.2), (3.4)-(3.8) and Σ −∆ in (3.9), (3.10). Then, by Lemma 3.4, Assumption
1 in Theorem 3.1 is satisfied for the operator ∆ defined by (3.18). Under the
conditions of the theorem, Assumptions 2 and 3 of Theorem 3.1 are satisfied.
Applying Theorem 3.1, Σ−∆ is proved to be exponentially stable and therefore,
so is system P.

Remark: The aforementioned theorem provides (only) sufficient stability con-
ditions based on the existence of a storage function. In the following sections,
we will present how this can be used in a constructive manner based on LMI
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and Sum of Squares (SOS) criteria. In Section 3.6, we will illustrate with exam-
ples, how Theorem 3.5 can be used to provide stability conditions for nonlinear
sampled-data systems of the form given by P. In Section 3.6.1, for an exem-
plary nonlinear system, we will show how the matrix R characterizing the supply
function, can be tuned using standard MATLAB routines.

3.4.3 Stability Criterion for Linear Systems

In this section, we will consider a linear sampled-data system PL of the form

ẋ(t) = Ax(t) +Bu(t),∀t ≥ 0, (3.23)

with x(0) = x0,

u(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0, ∀t ∈ [0, a0),

Kx(sk), ∀t ∈ [ak, ak+1), k ∈ N,
(3.24)

where x(t) ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, and K ∈ Rm×n. Now, we provide a
stability criterion for the linear sampled-data system PL in the form of tractable
LMI.

Theorem 3.6. Consider α ∈ R+. The linear sampled-data system PL is expo-
nentially stable with a decay-rate α/2 if there exists P = PT > 0 and R = RT > 0
such that

[
ĀTP + PĀ + αP PB

BTP 0
] + [

KĀ KB
0 I

]

T

[
γ2R 0

0 −R
] [
KĀ KB

0 I
] < 0, (3.25)

with Ā = A +BK, and γ2 = (h̄ + τ̄)2eα(h̄+τ̄).

Proof. The proof is given in Appendix 3.8.5.

Remark: Applying the Kalman-Yakubovich-Popov Lemma, we can infer
that the LMI given by (3.25) is equivalent to the frequency domain crite-
rion ∥G̃∥∞ < 1/γ, where G̃ is the operator defined by the transfer function
G̃(s) = KĀ(sI − Ā − α

2
I)−1B +KB. This result is in fact a generalization of

the results provided in [65] and [84]. We have extended the results in [65], [84]
by providing stability conditions for non-linear sampled-data systems while guar-
anteeing an exponential decay-rate. If α = 0, and h̄ = 0, we recover the result in
[65]. Similarly, if α = 0, and τ̄ = 0, we recover the result provided in [84].

In Section 3.6.2, we will demonstrate how matrices P and R can be tuned
numerically using standard LMI solvers. Using a similar gridding approach as
given in Algorithm 1 in Chapter 2, the LMI (3.25) can be used to obtain the set
of sampling and delay bounds for which the system is stable.
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3.5 Stability Analysis for the Small Delay Case

The large-delay case studied in Section 3.4 is more generic to processes com-
municating via a shared network, where traffic flow can increase considerably.
However, in some cases, it has been shown that it is desirable to have delay less
than sampling interval since sampled data arriving in a non-chronological order
at the actuator can be hazardous from a control point of view [1]. Consequen-
tially, this would make the implementations of algorithms and analysis much
more complex. In this section, we will demonstrate how considering sampling
and delay separately in the small-delay case, gives a less conservative stability
criterion. The following assumption is considered throughout the section.

Hypothesis 2: The actuation based on the sampled state x(sk) is implemented
before the next sampling instant sk+1, i.e.,

τk < hk,∀k ∈ N. (3.26)

Next, we re-formulate the sampled-data model for system P in order to include
the effects of sampling and delay using two separate errors, denoted by es(t)
and ed(t), respectively. Consider an exemplary continuous-time control signal
uc(t) = κ(xp(t)). The sampled version of this signal is denoted by

us(t) = κ(xp(sk)),∀t ∈ [sk, sk+1), k ∈ N. (3.27)

The sampling-induced error es(t) is given by us(t) − uc(t). Without loss of
generality, we consider that es(t) = 0,∀t < s0. Formally, es(t) is therefore defined
as

es(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0,∀t ∈ [0, s0),

κ(xp(sk)) − κ(xp(t)),∀t ∈ [sk, sk+1), k ∈ N.
(3.28)

The delayed version of us(t) is the control signal u(t) applied at the level of the
actuator. We introduce another error ed(t), which can be given by u(t)− us(t).
Note that we can define the error ed(t) = 0,∀t < a0, since it bears no relevance.
Formally, ed(t) is given by

ed(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0,∀t ∈ [0, a0),

0,∀t ∈ [ak−1, sk), k ∈ N⋆,

κ(xp(sk−1)) − κ(xp(sk)),∀t ∈ [sk, ak), k ∈ N⋆.

(3.29)

Using this formulation for es(t) and ed(t), given by (3.28) and (3.29), respec-
tively, we proceed to reformulate the sampled-data system P in the form of
Σ −∆.
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3.5.1 System Model Reformulation

In this section, we introduce two different operators ∆s and ∆d, which capture
the errors induced by sampling and delay given in (3.28) and (3.29), respectively.
In an approach similar to the one used in Section 3.4.1, system P under Hypoth-
esis 2, i.e. (3.26), can be represented as a feedback interconnection of the form
Σ −∆.

Lemma 3.7. Consider the operator ∆ ∶W2mp ↦W2mp

∆ ∶ φ = (
v
w
)→ (∆φ) = (

∆sv
∆dw

) ,∀v ∈Wmp ,w ∈W
mp , (3.30)

under Hypothesis 2, i.e. (3.26), where

(∆sv)(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0,∀t ∈ [0, s0),

− ∫
t
sk
v(θ)dθ,∀t ∈ [sk, sk+1), k ∈ N,

(3.31)

and

(∆dw)(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0,∀t ∈ [0, a0),

0,∀t ∈ [ak−1, sk), k ∈ N⋆,

− ∫
sk
sk−1 w(θ)dθ,∀t ∈ [sk, ak), k ∈ N⋆.

(3.32)

Then, the sampling and delay induced errors defined in (3.28) and (3.29), re-
spectively, can be expressed as

(
es
ed

) = (
∆su̇c
∆du̇c

) , (3.33)

with u̇c given by (3.19).

Proof. The proof is given in Appendix 3.8.6.

Analogous to the approach used in Section 3.4, we now proceed to reformu-
late the sampled-data system P under Hypothesis 2, i.e. (3.26), in the format
Σ − ∆ given by (3.9), (3.10). In the following lemma, by using such a model
reformulation along with Lemma 3.7, we provide the equivalence between the
sampled-data system P under Hypothesis 2, and the feedback interconnection
Σ −∆.

Lemma 3.8. Consider the system Σ in (3.9), with

f̄0(x) = f(x), h̄0(x) = [

∂κ(x)
∂x

f̄0(x)
∂κ(x)
∂x

f̄0(x)
] ,

f̄(x) = f(x) + g(x)κ(x), ḡ(x) = [g(x) g(x)] ,

h̄(x) = [

∂κ(x)
∂x

f̄(x)
∂κ(x)
∂x

f̄(x)
] , l̄(x) = [

∂κ(x)
∂x

ḡ(x)
∂κ(x)
∂x

ḡ(x)
] ,

(3.34)
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n = np, m = p = 2mp, x0 = x⋆0 and the operator ∆ in (3.10), defined by (3.30),
(3.31) and (3.32) under Hypothesis 2, i.e. (3.26). Then, the sampled-data sys-
tem P can be expressed as the feedback interconnection Σ −∆, with x = xp.

Proof. The proof is given in Appendix 3.8.7.

Lemmas 3.7 and 3.8 are used to provide constructive stability criterion for
sampled-data system P under Hypothesis 2. To this end, the supply function S
given in Theorem 3.1 needs to be formulated. We proceed in this direction by
studying the properties of operators ∆s and ∆d.

3.5.2 Stability Analysis

In this section, we characterize the properties of ∆s and ∆d, by functions Ss and
Sd, respectively. Consequently, we formulate the supply function S = Ss + Sd.

Lemma 3.9. Consider the operator ∆s defined in (3.31), β ∈ R+ and Rs ∈

Rmp×mp with Rs = R
T
s > 0. Then,

∫

t

0
Ss (θ, v(θ), (∆sv)(θ))dθ ≤ 0, ∀t ≥ 0, v ∈Wmp , (3.35)

where the function Ss ∶ R+ ×Rmp ×Rmp ↦ R is defined as

Ss ∶ (θ, v, µ)→ eβ(θ−a0) [
v
µ
]

T

[
−γ2

sRs γ2
s
β
2
Rs

γ2
s
β
2
Rs (1 − γ2

s
β2

4
)Rs

] [
v
µ
] , (3.36)

with γs =
2h̄
π

.

Proof. The proof is given in Appendix 3.8.8.

Lemma 3.10. Consider ∆d defined in (3.32) under Assumption 2, β ∈ R+ and
Rd ∈ Rmp×mp with Rd = R

T
d > 0. Then, for all w ∈Wmp ,

∫

t

0
Sd (θ,w(θ), (∆dw)(θ))dθ ≤ 0, ∀t ≥ 0, (3.37)

where the function Sd ∶ R+ ×Rmp ×Rmp ↦ R is defined as

Sd ∶ (θ,w, ε)→ eβ(θ−a0) [
w
ε
]

T

[
−γdRd 0

0 Rd
] [
w
ε
] , (3.38)

with γd = h̄τ̄ e
β(h̄+τ̄).

Proof. The proof is given in Appendix 3.8.9.
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The functions Ss and Sd given in Lemmas 3.9 and 3.10, provide the sampling
and delay component, respectively, of the supply function S = Ss+Sd. As follows,
we use the supply function S = Ss +Sd to provide a general, more accurate (less
conservative) stability criterion for the sampled-data system P under Hypothesis
2, i.e., when delay is less than sampling interval.

Theorem 3.11. Consider system P, the interconnection Σ −∆ given by (3.9),
(3.10), (3.30), (3.31), (3.32) and (3.34). If there exist functions S = Ss + Sd
defined using (3.36) and (3.38), and V ∶ Rnp ↦ R+ that satisfy assumptions
(3.12), (3.13), (3.14) and (3.15), then system P is exponentially stable with a
decay-rate α/q.

Proof. We exploit Lemma 3.8 to establish the equivalence between system P
under Hypothesis 2 and Σ −∆ in (3.9), (3.10). Then, by Lemmas 3.9 and 3.10,
Assumption 1 in Theorem 3.1 is satisfied for the operator ∆ defined by (3.30),
(3.31) and (3.32). Under the conditions of the theorem, Assumptions 2 and
3 of Theorem 3.1 are satisfied. Applying Theorem 3.1, Σ − ∆ is proved to be
exponentially stable and by equivalence, so is system P.

The result presented in Theorem 3.6 holds for any positive symmetric definite
matrices Rs and Rd characterizing the supply function. In Section 3.6.1, we will
illustrate how Theorem 3.11 provides less conservative results for the sampled-
data system P under Hypothesis 2, i.e., for the small delay case. The usage of
numerical tools to tune matrices Rs and Rd, will also be shown.

3.5.3 Stability Criterion for Linear Systems

In this section, we recall the linear sampled-data system PL described in Section
3.4.3 by (3.23). Based on the Lemmas 3.9 and 3.10, we provide the following
stability criterion for system PL under Hypothesis 2.

Theorem 3.12. Consider a scalar α ∈ R+ and Hypothesis 2. The linear sampled-
data system PL is exponentially stable with a decay-rate α/2 if there exist P =

PT > 0, Rs = Rs
T
> 0, and Rd = Rd

T
> 0 such that

[
ĀTP + PĀ + αP PB̄

B̄TP 0
] + [

KĀ KB̄
0 I

]

T

Φ [
KĀ KB̄

0 I
] < 0, (3.39)

with Ā = A +BK, B̄ = [B B], and

Φ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

γ2
sRs + γdRd −γ2

s
α
2
Rs 0

−γ2
s
α
2
Rs (γ2

s
α2

4
− 1)Rs 0

0 0 −Rd

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.40)

where γs =
2h̄
π

and γd = h̄τ̄ e
α(h̄+τ̄).



3.6 Illustrative Examples 71

Proof. The proof is given in Appendix 3.8.10.

Remark: When α = 0, τ̄ = 0 (implying no delay component in S), the LMI
(3.39) translates to a form similar to LMI (3.25). Consequentially, by virtue
of the Kalman-Yakubovich-Popov lemma, we can recover the frequency domain
condition introduced in [84], i.e., ∥G̃∥∞ < π

2h̄
, where G̃ is the operator defined by

the transfer function G̃(s) =KĀ(sI − Ā − α
2
I)−1B̄ +KB̄.

In Section 3.6.2, we will illustrate with examples, how the LMI (3.39) provides
less conservative results for LTI systems under Hypothesis 2, i.e., for the small
delay case.

3.6 Illustrative Examples

In this section, we illustrate the effectiveness of our proposed results via ex-
amples. The provided examples highlight the difference between the single-error
approach and the separate-error approach in terms of conservativeness and trade-
offs between control performance and the bounds on sampling interval and delay.
The result presented in this chapter provides a foundation for deciding the trade-
off between maximum delay τ̄ , maximum sampling period h̄, and decay-rate α.
By fixing one of the parameters, the trade-off between the remaining parame-
ters can be obtained. For example, by fixing τ̄ , and gridding over h̄ and α, a
trade-off between the decay-rate and the maximum allowable sampling interval
can be obtained. In a similar manner, fixing h̄ will give the trade-off between α
and τ̄ , and so on.

3.6.1 Nonlinear System Example

We consider the following example given in [67], [90], [93],

ẋ(t) = dx(t)2
− x(t)3

+ u(t), (3.41)

with a bounded time-varying parameter ∣d(t)∣ ≤ 1, and a stabilizing control
u(t) = κ(x(t)) = −2x(t) subjected to both sampling and delay. Since the function
f(x) = x2 − x3 is locally Lipschitz, our results will only hold locally on any
compact set containing the origin.

3.6.1.1 Large-delay Case

Using the definition in (3.20), we reformulate the system model in the form
Σ −∆, where Σ is given by

ẋ(t) = dx2(t) − x3(t)

y(t) = −2(dx2(t) − x3(t))
}∀t ∈ [0, a0),

ẋ(t) = dx2(t) − x3(t) − 2x(t) +w(t)

y(t) = −2(dx2(t) − x3(t) − 2x(t) +w(t))
}∀t ≥ a0.

(3.42)
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Figure 3.1: Feasible values of h̄ and τ̄ for the nonlinear system (3.41) with
α = 0.1, in the large-delay case (in red), and in the small-delay case (in blue).

We use a storage function of the form V (x) = ax2 + bx4 as given in [93]. Using
(3.22), we obtain the supply function

S(θ, y,w) = eα(θ−a0) [Rw2
(θ) − γ2Ry2

(θ)] , (3.43)

with γ2 = (h̄+ τ̄)2eα(h̄+τ̄). For this case, from condition (3.15), we can infer that
the values of (h̄ + τ̄) satisfying the inequality

(2ax + 4bx3
)(dx2

− x3
− 2x +w) + α(ax2

+ bx4
) −Rw2

+4(h̄ + τ̄)2eα(h̄+τ̄)R(dx2
− x3

− 2x +w)
2
≤ 0,

(3.44)

will guarantee exponential stability. If (3.44) can be expressed as a Sum of
Squares (SOS) for all the values of (d, d2) ∈ {(1,0), (1,1), (−1,0), (−1,1)}, then
it will be SOS for any time-varying ∣d(t)∣ ≤ 1. Using SOSTOOLS [96], Figure
3.1 provides the feasible values of h̄ and τ̄ (in red) for α = 0.1, and all values
of (d, d2). It can be seen from Figure 3.1 that, for α = 0.1, h̄ and τ̄ satisfy
a maximum bound h̄ + τ̄ ≤ 0.45, with a = 0.7079, b = 0.1890 and R = 0.4268.
The parameters a, b and R are optimized using SOSTOOLS. Additionally, the
trade-off between the desired decay-rate α/2 and h̄ + τ̄ is shown in Figure 3.2.
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Figure 3.2: Trade-off between desired decay-rate α and h̄ + τ̄ for the nonlinear
system (3.41), in the large-delay case.

3.6.1.2 Small-delay Case

Now, we shall provide bounds on h̄ and τ̄ in the small-delay case, i.e., τk < hk.
In this case, the system model is reformulated in the form Σ, given by

ẋ(t) = dx2(t) − x3(t)

y(t) = [yT1 (t) yT2 (t)]
T

⎫⎪⎪
⎬
⎪⎪⎭

∀t ∈ [0, a0), (3.45)

with
y1(t) = y2(t) = −2(dx2

(t) − x3
(t)),∀t ∈ [0, a0), (3.46)

and
ẋ(t) = dx2

(t) − x3
(t) − 2x(t) +ws(t) +wd(t),

y(t) = [yT1 (t) yT2 (t)]
T
,∀t ≥ a0,

(3.47)

where

y1(t) = y2(t) = −2(dx2
(t) − x3

(t) − 2x(t) +ws(t) +wd(t)),∀t ≥ a0. (3.48)

Using (3.36) and (3.38), we get the supply function

S(θ, y,w) = Ss(θ, y1,ws) + Sd(θ, y2,wd),

= eα(θ−a0) [−γ2
sRsy

2
1(θ) − γdRdy

2
2(θ) + γ

2
sαRsy1(θ)ws(θ)

+(1 − γ2
s

α2

4
)Rsw

2
s +Rdw

2
d] ,

(3.49)
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where γs = 2h̄
π

and γd = h̄τ̄ eβ(h̄+τ̄). Therefore, by using the supply function
(3.49) in condition (3.15), we must deduce the values of h̄ and τ̄ satisfying the
inequality

(2ax + 4bx3
)(dx2

− x3
− 2x +ws +wd) + α(ax

2
+ bx4

)

+ 4(γ2
sRs + γdRd)(dx

2
− x3

− 2x +ws +wd)
2

+ 2γ2
sαRs(dx

2
− x3

− 2x +ws +wd)ws − (1 − γ2
s

α2

4
)Rsw

2
s −Rdw

2
d ≤ 0,

(3.50)

in order to guarantee exponential stability of the system (3.41), with α > 0,
τk < hk. For the sake of comparison with the feasibility region obtained in the
large-delay case, we choose α = 0.1.

In a similar manner as shown in the large-delay case, we use SOSTOOLS to
obtain the feasible values of h̄ and τ̄ satisfying inequality (3.50), for all values
of (d, d2), while optimizing the values of a, b, Rs and Rd. The feasibility plot in
the small-delay case is given in Figure 3.1 (in blue). In Figure 3.1, it can be seen
that the red feasibility plot (indicating feasibility for the large-delay case) and the
blue feasibility plot (indicating the small-delay case) overlap. This overlapping
region represents the feasible values of h̄ and τ̄ obtained when the criterion
(3.44) provided for the large-delay case, is applied to the small-delay case. In
such scenarios, Theorem 3.11 and Theorem 3.12 always provide better results in
comparison to the results given by Theorem 3.5 and Theorem 3.6, respectively.
In Figure 3.1, when τ̄ → 0, we can see that bounds on h̄ upto 0.72 are feasible
while using the tools presented in the small-delay analysis. The tool presented
in the large-delay case, on the other hand, accommodates h̄ upto 0.45, thereby
implying an improvement of about 60% while using the result provided in the
small-delay case. Additionally, when h̄ = 0.27, the feasible values of τ̄ in the
large and small-delay cases, are approximately upto 0.17 and 0.27, respectively,
showing an improvement of about 59%. Using these numerical arguments, it
can be concluded that for the small-delay case, capturing the effects of sampling
and delay using two separate errors gives less conservative results. However,
the amount of improvement in the small-delay case over the large-delay case
depends on the parameter α. We illustrate this in the following section for a
linear system example.

Remark: The less-conservative nature of the results proposed in the small-
delay case can also be justified from a theoretical perspective. In the large-
delay case, the supply function was formulated using Jensen’s inequality, which
introduces conservativeness, as shown in [16]. On the other hand, in the small-
delay case, Wirtinger’s inequality has been used. For this case, the improvement
over Jensen’s inequality is well known in the literature (see [115]).

For the same example in the absence of delay, in [90] and [67], upper-bounds
of 0.368 and 0.143, respectively, were obtained for the sampling intervals with-
out any performance guarantee. This is comparable to the small-delay case we
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have considered, with τ̄ = 0. Additionally, in [93], an upper-bound of 0.72 was
proposed for the system (3.41) without delay, with α = 0.1. From the results
proposed for the small-delay case, by setting τ̄ = 0, indicating sampling with-
out any delay, we can see in Figure 3.1 that we obtain the same upper-bound
of 0.72 on the sampling intervals, as proposed in [93], with a = 2.9153 × 10−6,
b = 7.29×10−7, Rs = 1.6964×10−6 and Rd = 1.2465. However, our results have an
added advantage that we provide tractable stability conditions for the nonlinear
sampled-data system in the presence of time-varying delay.

3.6.2 Linear System Example

Consider the system (3.23) characterized by the parameters [144]

A = [
1 3
2 1

] ,B = [
1

0.6
] ,K = − [1 6] . (3.51)

By virtue of Theorem 3.6, we can compute the maximum allowable values of
h̄ + τ̄ with respect to α from the LMI (3.25). The LMI (3.25) is solved using
YALMIP, by optimizing parameters P and R, for different values of α and h̄+ τ̄ .
The feasibility region thus obtained will aid in deciding the trade-off between a
desired decay rate while taking into account the maximum bounds on sampling
interval and delay. Considering α ∈ {0.01,1,2}, we obtain the bounds on h̄
and τ̄ as shown in Figure 3.3 (in red solid, dashed and dotted lines). For the
LTI system (3.51), if α = 0 and h̄ = 0, we recover the bound on τ̄ as given in
[65]. For the chosen values of α ∈ {0.01,1,2}, we also compute the bounds on
h̄ and τ̄ in the small-delay case (as shown in Figure 3.3 in blue solid, dashed
and dotted lines). Following a similar explanation as given in Section 3.6.1.2, we
can conclude that for the small-delay case, differentiating the effects of sampling
and delay using two separate errors, the LMI in (3.39) introduced in Theorem
3.12 provides less conservative results in comparison to the criterion provided in
(3.25) (applied to the small-delay case). Figure 3.3 also gives the dependence of
the amount of improvement in the small-delay case over the large-delay case, on
the parameter α. If α = 0 and τ̄ = 0, we recover the bound on h̄ as proposed in
[84]. Therefore, we can conclude that by applying our generic nonlinear tools to
the linear case, we provide bounds on h̄ and τ̄ that are not more conservative in
comparison to the bounds provided in [65], [84]. Also, it has to be noted that
despite the fact that the condition in (3.25) is more conservative when applied
to the small-delay case, the result is still important since it is applicable to the
more generic large-delay case.

3.7 Conclusion

In this chapter, novel approaches for stability analysis of aperiodically sampled
nonlinear systems with time-varying delay are provided. The framework intro-
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Figure 3.3: Bounds on h̄ and τ̄ for the LTI system (3.51) in the large-delay
case (in red), and in the small-delay case (in blue), for α = 0.01 (solid line),
α = 1 (dashed line) and α = 2 (dotted line). The analytical stability bounds on
constant hk and τk are given by the green line [134].

duced in this chapter holds for a general class of nonlinear systems and provides
tools that help in deciding required trade-offs between the system decay-rate
and the bounds on sampling interval and delay. As a preliminary result, an
approach inspired from the notion of exponential dissipativity is used to provide
stability conditions for a class of feedback interconnected systems, while guar-
anteeing a desired decay-rate. The nonlinear sampled-data system is remodelled
as a feedback interconnection of the nominal closed-loop system and an operator
that captures the effects of sampling and delay, thereby leading to constructive
stability conditions. The proposed approach leads to conditions on dissipativ-
ity properties of the system, for which many results exist in literature. When
applying the results to LTI case, we see that they generalize existing frequency
domain and LMI conditions in the robust stability framework. For the case
when delay is less than sampling interval, a less conservative stability criterion
is obtained by considering two separate operators to capture the effects of sam-
pling and delay. The effectiveness of the proposed theoretical results have been
corroborated via simulation results for an exemplary nonlinear system. We fore-
see numerous extensions. For example, a more realistic scenario would involve
multiple sensors and actuators, each with unique bounds on sampling interval
and delay [39], [129].



3.8 Appendix 77

3.8 Appendix

3.8.1 Proof of Theorem 3.1

Let us first upper-bound the response x(t) for all t ≥ a0. Consider the function

W (t) = eα(t−a0)V (x(t)) − ∫
t

a0
S(θ, y(θ), ω(θ))dθ,∀t ≥ a0, (3.52)

From condition (3.15), we have Ẇ (t) ≤ 0, for all t ≥ a0 and therefore
W (t) ≤ W (a0), for all t ≥ a0, which can be stated as eα(t−a0)V (x(t)) −

∫
t
a0
S(θ, y(θ), ω(θ))dθ ≤ V (x(a0)). Therefore, for all t ≥ a0, we obtain

V (x(t)) ≤e−α(t−a0) [−∫
a0

0
S(θ, y(θ), ω(θ))dθ

+∫

t

0
S(θ, y(θ), ω(θ))dθ + V (x(a0))] ,

(3.53)

and by using (3.11), for all θ ≥ 0, we have

V (x(t)) ≤ e−α(t−a0) [−∫
a0

0
S(θ, y(θ), ω(θ))dθ + V (x(a0))] . (3.54)

By integrating condition (3.14) for all t ∈ [0, a0), we have

V (x(a0)) ≥ e
λ(a0−t)V (x(t)),∀t ∈ [0, a0). (3.55)

Then, by integrating condition (3.13) and using (3.55) for all t ∈ [0, a0), we have

−∫

a0

0
S (θ, y(θ), ω(θ))dθ ≤ ρ∫

a0

0
V (x(θ))dθ

≤ ρ∫
a0

0
eλ(θ−a0)V (x(a0))dθ

= ηV (x(a0)),

(3.56)

where

η ∶=

⎧⎪⎪
⎨
⎪⎪⎩

ρe−λa0
λ

(eλa0 − 1), if λ ≠ 0,

ρa0, if λ = 0.
(3.57)

Consequently, from (3.54),

V (x(t)) ≤ e−α(t−a0)(1 + η)V (x(a0)),

= e−α(t−a0)CV (x(a0)),∀t ≥ a0,
(3.58)

with C ∶= η + 1 > 1. Then, from (3.12), we obtain for all t ≥ a0,

c1∥x(t)∥
q
≤ V (x(t)) ≤ e−α(t−a0)CV (x(a0)) ≤ e

−α(t−a0)Cc2∥x(a0)∥
q, (3.59)
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and thus

∥x(t)∥ ≤
q

√

C
c2
c1
e
−α
q (t−a0)∥x(a0)∥,∀t ≥ a0. (3.60)

Now, let us analyse the response in the interval t ∈ [0, a0). Using the definition of
system Σ in (3.9) for all t ∈ [0, a0), we have ẋ(t) = f̄0(x(t)), where f̄0 is globally
Lipschitz continuous with some constant k0 and f̄0(0) = 0. Hence, we have that

x(t) − x(0) = ∫
t

0
f̄0(x(s))ds. (3.61)

Using the Triangular Inequality, this gives

∥x(t)∥ ≤ ∥x(0)∥ + ∫
t

0
∥f̄0(x(s))∥ds. (3.62)

Since f̄0 is Lipschitz continuous and f̄0(0) = 0,

∥f̄0(x(s))∥ = ∥f̄0(x(s)) − f̄0(0)∥ ≤ k0∥x(s) − 0∥ = k0∥x(s)∥. (3.63)

Consequently, (3.62) leads to

∥x(t)∥ ≤ ∥x(0)∥ + k0 ∫

t

0
∥x(s)∥ds. (3.64)

By virtue of Gronwall’s inequality, we obtain

∥x(t)∥ ≤ ∥x(0)∥ek0t,∀t ∈ [0, a0), (3.65)

implying ∥x(a0)∥ ≤ e
k0a0∥x(0)∥. From (3.60), we obtain

∥x(t)∥ ≤
q

√

C
c2
c1
e
−α
q (t−a0)ek0a0∥x(0)∥,∀t ≥ a0. (3.66)

Additionally, for all t ∈ [0, a0), we can upper-bound inequality (3.65) by

∥x(t)∥ ≤ ek0t∥x(0)∥ ≤ ek0a0∥x(0)∥ ≤
q

√

C
c2
c1
e
−α
q (t−a0)ek0a0∥x(0)∥,∀t ∈ [0, a0),

(3.67)
since C > 1 (see (3.58)), c2 ≥ c1 (see (3.12)), and −α

q
(t − a0) ≥ 0. Consequently,

using (3.66), we obtain

∥x(t)∥ ≤
q

√

C
c2
c1
e
−α
q (t−a0)ek0a0∥x(0)∥ = δe−

αt
q ∥x(0)∥,∀t ≥ 0, (3.68)

with δ ∶= e(k0+
α
q )a0

q√
C c2
c1

, thereby implying that the system Σ−∆ is exponentially

stable with a decay-rate of at least α/q.
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3.8.2 Proof of Lemma 3.2

(1) For all t ∈ [0, a0): As per the definition of e(t) in (3.17) and ∆ in (3.18), we
have

e(t) = 0 = (∆u̇c)(t),∀t ∈ [0, a0). (3.69)

(2) For all t ∈ [ak, ak+1), k ∈ N: We have

e(t) = κ(xp(sk)) − κ(xp(t)), (3.70)

which can be reformulated as

e(t) = −∫
t

sk

d

ds
κ(xp(s))ds = −∫

t

sk
u̇c(s)ds. (3.71)

Therefore, using the definition of ∆ in (3.18), it can be concluded that indeed
e(t) = (∆u̇c)(t).

3.8.3 Proof of Lemma 3.3

Consider the system P in (3.1), (3.2), (3.4)-(3.8). Moreover, consider the follow-
ing notational relations:

y(t) = u̇c(t), (3.72)

with u̇c(t) given by (3.19), and ω(t) = e(t), with e(t) defined by (3.17). By
virtue of Lemma 3.2, we have,

ω(t) = e(t) = (∆u̇c)(t) = (∆y)(t),∀t ≥ 0. (3.73)

(1) For all t ∈ [0, a0): As per the definition of system P, we have

ẋp(t) = f(xp(t)), (3.74)

and using (3.19),

y(t) = u̇c(t) =
d

dt
κ(xp(t)) =

∂κ(xp(t))

∂xp
f(xp(t)). (3.75)

Using (3.20), (3.74) and (3.75) this is equivalent to

ẋp(t) = f̄0(xp(t)), y(t) = h̄0(xp(t)). (3.76)

This expresses the dynamics of system Σ for t ∈ [0, a0), given by (3.9), with f̄0

and h̄0 as defined in (3.20), i.e, for all t ∈ [0, a0), x(t) = xp(t). Additionally,
using f̄0(x) = f(x), it can be concluded from the definition of system P that the
function f̄0 is globally Lipschitz continuous with f̄0(0) = 0.
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(2) For all t ∈ [ak, ak+1), k ∈ N: The dynamics of system P is given by

ẋp(t) = f(xp(t)) + g(xp(t))u(t) = f(xp(t)) + g(xp(t))κ(xp(sk))

= f(xp(t)) + g(xp(t))κ(xp(t)) + g(xp(t)) [κ(xp(sk)) − κ(xp(t))] .
(3.77)

Using (3.20), and recalling the definition of e(t) in (3.17), we obtain

ẋp(t) = f̄(xp(t)) + ḡ(xp(t))e(t). (3.78)

This is equivalent to the dynamics of system Σ for t ≥ a0, given by (3.9), with
ω(t) = e(t) and the functions f̄ and ḡ defined by (3.20), i.e., for all t ≥ a0, we
have x = xp.

Additionally, from (3.72) and (3.19) we have,

y(t) =
d

dt
κ(xp(t)) =

∂κ(xp(t))

∂xp
(f̄(xp(t)) + ḡ(xp(t))e(t)). (3.79)

Once again, using notation (3.20) and e(t) = ω(t), we have,

y(t) = h̄(xp(t)) + l̄(xp(t))ω(t), (3.80)

which is the same as y defined in (3.9), for all t ≥ a0, since we have already
shown x = xp. Therefore, it can be seen that system P can be expressed as the
feedback interconnection Σ−∆, with the functions f̄0, h̄0, f̄ , ḡ, h̄, and l̄ defined
by (3.20).

3.8.4 Proof of Lemma 3.4

(1) For t ∈ [0, a0): Using the definition of ∆ in (3.18), we have (∆z)(θ) = 0, for

all θ ∈ [0, t) and clearly (3.21) holds in this case since

S(θ, z(θ), (∆z)(θ)) = −γ2zT (θ)Rz(θ) ≤ 0. (3.81)

(2) For t ≥ a0: Let w(t) denote

w(t) = (∆z)(t) = −∫
t

sk
z(ζ)dζ,∀t ∈ [ak, ak+1), k ∈ N. (3.82)

Using Jensen’s inequality, we obtain

wT (t)Rw(t) ≤ (t − sk)∫
t

sk
zT (ζ)Rz(ζ)dζ ≤ (h̄ + τ̄)∫

t

sk
zT (ζ)Rz(ζ)dζ. (3.83)

Using the change of variable s = ζ − t, we obtain

wT (t)Rw(t) ≤ (h̄ + τ̄)∫
0

sk−t
zT (t + s)Rz(t + s)ds

≤ (h̄ + τ̄)∫
0

−(h̄+τ̄)
zT (t + s)Rz(t + s)ds.

(3.84)
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Therefore,

∫

t

a0
eα(θ−a0)wT (θ)Rw(θ)dθ

≤ (h̄ + τ̄)∫
t

a0
eα(θ−a0) (∫

0

−(h̄+τ̄)
zT (θ + s)Rz(θ + s)ds)dθ.

(3.85)

Substituting u = θ + s, we have that

∫

t

a0
eα(θ−a0)wT (θ)Rw(θ)dθ

≤ (h̄ + τ̄)∫
0

−(h̄+τ̄)
(∫

t+s

a0+s
eα(u−s−a0)zT (u)Rz(u)du)ds.

(3.86)

Since the inner integral in the right-hand side of the inequality in (3.86) is always
positive, we can upper bound the left-hand side in (3.86) using the limits of s
and obtain

∫

t

a0
eα(θ−a0)wT (θ)Rw(θ)dθ

≤ (h̄ + τ̄)∫
0

−(h̄+τ̄)
(∫

t+0

a0−(h̄+τ̄)
eα(u+(h̄+τ̄)−a0)zT (u)Rz(u)du)ds

≤ (h̄ + τ̄)eα(h̄+τ̄) ∫
0

−(h̄+τ̄)
(∫

t

0
eα(u−a0)zT (u)Rz(u)du)ds

= (h̄ + τ̄)2eα(h̄+τ̄) ∫
t

0
eα(u−a0)zT (u)Rz(u)du.

(3.87)

As per definition (3.18), we have w(t) = 0 for all 0 ≤ t < a0 and, consequently,

∫

t

0
eα(θ−a0)wT (θ)Rw(θ)dθ = ∫

t

a0
eα(θ−a0)wT (θ)Rw(θ)dθ

≤ (h̄ + τ̄)2eα(h̄+τ̄) ∫
t

0
eα(u−a0)zT (u)Rz(u)du.

(3.88)
Hence, using the definition of w(t) in (3.82), we have that

∫

t

0
eα(θ−a0)((∆z)T (θ)R(∆z)(θ) − (h̄ + τ̄)2eα(h̄+τ̄)zT (θ)Rz(θ))dθ ≤ 0, (3.89)

which proves the integral inequality (3.21), thereby concluding the proof.

3.8.5 Proof of Theorem 3.6

Comparing the sampled-data systems PL and P, we have,

f(x(t)) ∶= Ax(t), g(x(t)) ∶= B,κ(x(sk)) ∶=Kx(sk). (3.90)
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Hence, the sampling and delay induced error is given by

e(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0,∀t ∈ [0, a0),

Kx(sk) −Kx(t),∀t ∈ [ak, ak+1), k ∈ N,
(3.91)

thereby implying that using the operator ∆ defined in (3.18), we can state
e = ∆(Kẋ). Using the inequality in (3.25), we proceed to prove that the assump-
tions introduced in Theorem 3.1 will hold for V (x) = xTPx and S (t, y(t),w(t))
defined by (3.22). For the LTI system PL, the functions given in (3.20) are given
by

f̄0(x(t)) ∶= Ax(t), h̄0(x(t)) ∶=KAx(t),

f̄(x(t)) ∶= Āx(t), ḡ(x(t)) ∶= B,

h̄(x(t)) ∶=KĀx(t), l̄(x(t)) ∶=KB,

(3.92)

where Ā = (A +BK).

(1) Satisfying Assumption 1, i.e., (3.11): By virtue of Lemma 3.4, we can see

that the supply function S (t, y(t),w(t)) defined by (3.22) satisfies assumption
(3.11) in Theorem 3.1, i.e.,

∫

t

0
S(θ, y(θ), (∆y)(θ))dθ ≤ 0,∀t ≥ 0. (3.93)

(2) Satisfying Assumption 2, i.e., (3.12): With V (x) = xTPx, P = PT > 0 and
x ∈ Rn, we have that

δmin(P )∥x∥2
≤ xTPx ≤ δmax(P )∥x∥2, (3.94)

implying Assumption 2 is satisfied with q = 2, c1 = δmin(P ) and c2 = δmax(P ).

(3) Satisfying Assumption 3, inequality (3.13): Consider the function

S (t, y(t),w(t)) defined by (3.22). Since

y(t) = h̄0(x(t)) =KAx(t),∀t ∈ [0, a0), (3.95)

and ω(t) = 0, we have that for all t ∈ [0, a0),

−S(t, y(t), ω(t)) = −S(t, h̄0(x(t)),0)

= eα(t−a0)γ2xT (t)(KA)
TR(KA)x(t)

≤ max
θ∈[0,a0]

{δmax [e
α(θ−a0)γ2

(KA)
TR(KA)] }∥x(t)∥2

≤ ρV (x(t)),

(3.96)

with

ρ =
δmax (γ

2(KA)TR(KA))

δmin(P )
. (3.97)
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(4) Satisfying Assumption 3, inequality (3.14): We have V (x(t)) = x(t)TPx(t)
for all t ≥ 0. Additionally,

ẋ(t) = f̄0(x(t)) = Ax(t),∀t ∈ [0, a0), (3.98)

and consequently,

V̇ (x(t)) = x(t)T [ATP + PA]x(t) ≥
δmin (ATP + PA)

δmax(P )
V (x(t)). (3.99)

Therefore, inequality (3.14) is satisfied for any λ ≤
δmin(A

TP+PA)

δmax(P )
.

(5) Satisfying Assumption 3, inequality (3.15): Consider the function

W (t) = V̇ (x(t)) + αV (x(t)) − e−α(t−a0)S(t, y(t), e(t)), (3.100)

defined for all t ≥ a0, with V (x) = xTPx, and the function S(t, y(t), e(t)) defined
by (3.22). Clearly, inequality (3.15) in Assumption 3 holds if W (t) ≤ 0, for all
t ≥ a0. We have,

S (t, y(t), e(t)) = eα(t−a0) [
y(t)
e(t)

]

T

[
−γ2R 0

0 R
] [
y(t)
e(t)

]

= eα(t−a0) [
x(t)
e(t)

]

T

N [
x(t)
e(t)

] ,

(3.101)

where

N = [
KĀ KB

0 I
]

T

[
−γ2R 0

0 R
] [
KĀ KB

0 I
] . (3.102)

Therefore, we have that for all t ≥ a0,

W (t) = V̇ (x(t)) + αV (x(t)) − e−α(t−a0)S(t, y(t), e(t))

= [
x(t)
e(t)

]

T

{[
ĀTP + PĀ PB
BTP 0

] + α [
P 0
0 0

] −N}[
x(t)
e(t)

]

= [
x(t)
e(t)

]

T

Γ [
x(t)
e(t)

] ,

(3.103)

with

Γ ∶= [
ĀTP + PĀ + αP PB

BTP 0
] −N. (3.104)

Substituting N in the expression for Γ, gives

Γ = [
ĀTP + PĀ + αP PB

BTP 0
] −N

= [
ĀTP + PĀ + αP PB

BTP 0
] + [

KĀ KB
0 I

]

T

[
γ2R 0

0 −R
] [
KĀ KB

0 I
] .

(3.105)



84
Chapter 3. Dissipativity-based Framework for Stability Analysis of Aperiodically

Sampled Nonlinear Systems with Time-varying Delay

A sufficient condition for W (t) ≤ 0, for all t ≥ a0, will therefore be given by Γ ≤ 0,
which is guaranteed by (3.25). Consequently, we have proved that inequality
(3.15) in Assumption 3 is satisfied for the chosen storage and supply functions.

We have shown that all the assumptions of Theorem 3.1 hold for V (x) =

xTPx and S (t, y(t), e(t)) defined by (3.22) and, therefore, the exponential sta-
bility of system P is guaranteed with a decay rate greater than or equal to
α/2.

3.8.6 Proof of Lemma 3.7

(1) Expressing es using ∆s: Recalling the definition of es(t) in (3.28), and by
using the operator definition for ∆s in (3.31), we can state using (3.19) that

es(t) = 0 = (∆su̇c)(t),∀t ∈ [0, s0). (3.106)

Similarly, for all t ∈ [sk, sk+1), k ∈ N,

es(t) = κ(xp(sk)) − κ(xp(t)) = −∫
t

sk

d

ds
κ(xp(s))ds

= −∫

t

sk
u̇c(s)ds = (∆su̇c)(t).

(3.107)

Hence, we have
es(t) = (∆su̇c)(t),∀t ≥ 0. (3.108)

(2) Expressing ed using ∆d: In a similar manner, using the definition of ed(t) in
(3.29) and the operator definition for ∆d defined in (3.32), we have,

ed(t) = 0 = (∆du̇c)(t),∀t ∈ [0, a0) ∪ [ak−1, sk)k∈N⋆ . (3.109)

Similarly, for all t ∈ [sk, ak), k ∈ N⋆,

ed(t) = κ(xp(sk−1)) − κ(xp(sk)) = −∫
sk

sk−1

d

ds
κ(xp(s))ds

= −∫

sk

sk−1
u̇c(s)ds = (∆du̇c)(t).

(3.110)

Hence, we obtain
ed(t) = (∆du̇c)(t),∀t ≥ 0. (3.111)

3.8.7 Proof of Lemma 3.8

Consider system P, the notations y(t) = [yT1 (t) yT2 (t)]
T
= [u̇Tc (t) u̇Tc (t)]

T
,

with u̇c defined by (3.19), and ω(t) = [eTs (t) eTd (t)]
T

, with es(t) and ed(t)
given by (3.28) and (3.29), respectively. By virtue of Lemma 3.7, we have

ω(t) = [
es(t)
ed(t)

] = [
(∆su̇c)(t)
(∆du̇c)(t)

] = (∆y)(t),∀t ≥ 0, (3.112)
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with ∆s and ∆d given in (3.31) and (3.32), respectively. In order to establish the
equivalence between system P and the feedback interconnection Σ−∆, we begin
by reformulating the dynamics of system P for all t ∈ [0, a0), t ∈ [ak, sk+1)k∈N,
and t ∈ [sk+1, ak+1)k∈N, i.e., for all t ≥ 0.

(1) For all t ∈ [0, a0): Consider the system P. We have that ẋp(t) = f(xp(t)),

and using (3.19),

y1(t) = y2(t) = u̇c(t) =
d

dt
κ(xp(t)) =

∂κ(xp(t))

∂xp
ẋp(t) =

∂κ(xp(t))

∂xp
f(xp(t)).

(3.113)
Therefore, using the notation in (3.34), we obtain

ẋp(t) = f̄0(xp(t)), y(t) = [yT1 (t) yT2 (t)]
T
= h̄0(xp(t)). (3.114)

Note that this is the dynamics of system Σ for t ∈ [0, a0), given by (3.9), with
the functions f̄0 and h̄0 as defined in (3.34), i.e., for all t ∈ [0, a0), x(t) = xp(t).
Additionally, as per the notation in (3.20), since f̄0(x) = f(x), it can be con-
cluded from the definition of system P that the function f̄0 is globally Lipschitz
continuous with f̄0(0) = 0.

(2) For all t ∈ [ak, sk+1), k ∈ N: The dynamics of system P is given by

ẋp(t) = f(xp(t)) + g(xp(t))u(t)

= f(xp(t)) + g(xp(t))κ(xp(sk))

= f(xp(t)) + g(xp(t))κ(xp(t)) + g(xp(t)) [κ(xp(sk)) − κ(xp(t))] .

(3.115)

Using the definitions of sampling and delay induced errors in (3.28) and (3.29),
respectively, we have

es(t) = κ(xp(sk)) − κ(xp(t)),∀t ∈ [ak, sk+1), (3.116)

and ed(t) = 0 for all t ∈ [ak, sk+1). Therefore, we can reformulate the dynamics
of system P for all t ∈ [ak, sk+1) as

ẋp(t) = f(xp(t)) + g(xp(t))κ(xp(t)) + g(xp(t))es(t) + g(xp(t))ed(t)

= f(xp(t)) + g(xp(t))κ(xp(t)) + [g(xp(t)) g(xp(t))] [
es(t)
ed(t)

] .
(3.117)

Using the notation in (3.34), this can be written as

ẋp(t) = f̄(xp(t)) + ḡ(xp(t))ω(t), (3.118)

with ω(t) as in (3.112). This is the same as dynamics of system Σ for all
t ∈ [ak, sk+1), k ∈ N, given by (3.9), with ω defined in (3.112), and the functions
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f̄ and ḡ defined by (3.34), i.e., for all t ∈ [ak, sk+1), with x = xp. Additionally,
we have u̇c(t) =

d
dt
κ(xp(t)) and hence,

y1(t) = y2(t) =
∂κ(xp(t))

∂xp
(f̄(xp(t)) + ḡ(xp(t))ω(t)) . (3.119)

Therefore, using the notation in (3.34) once again, we obtain

y(t) = [yT1 (t) yT2 (t)]
T
= h̄(xp(t)) + l̄(xp(t))ω(t), (3.120)

which is the same as y defined in (3.9), for t ∈ [ak, sk+1), with x = xp.

(3) For all t ∈ [sk+1, ak+1), k ∈ N: Once again, we proceed to reformulate the dy-
namics of system P given by

ẋp(t) = f(xp(t)) + g(xp(t))u(t)

= f(xp(t)) + g(xp(t))κ(xp(sk))

= f(xp(t)) + g(xp(t))κ(xp(sk)) + g(xp(t))κ(xp(t)) − g(xp(t))κ(xp(t))

+ g(xp(t))κ(xp(sk+1)) − g(xp(t))κ(xp(sk+1))

= (f(xp(t)) + g(xp(t))κ(xp(t))) + g(xp(t)) [κ(xp(sk+1)) − κ(xp(t))]

+ g(xp(t)) [κ(xp(sk)) − κ(xp(sk+1))] .
(3.121)

Using the definitions in (3.28) and (3.29) and considering Hypothesis 2, we have
that

es(t) = κ(xp(sk+1)) − κ(xp(t)),∀t ∈ [sk+1, sk+2) ⊃ [sk+1, ak+1), (3.122)

and
ed(t) = κ(xp(sk)) − κ(xp(sk+1)),∀t ∈ [sk+1, ak+1). (3.123)

Therefore, using the notation in (3.34), we can reformulate the dynamics of
system P for all t ∈ [sk+1, ak+1) as

ẋp(t) = f̄(xp(t)) + g(xp(t))es(t) + g(xp(t))ed(t)

= f̄(xp(t)) + ḡ(xp(t))ω(t).
(3.124)

This is the same as dynamics of system Σ in (3.9) for all t ∈ [sk+1, ak+1], k ∈ N,
with ω(t) given by (3.112), and the functions f̄ and ḡ defined by (3.34), with
x(t) = xp(t). Additionally, using the notation y1(t) = y2(t) = u̇c(t), and following
the reasoning given in (3.119), we get,

y(t) = [yT1 (t) yT2 (t)]
T
= h̄(xp(t)) + l̄(xp(t))ω(t), (3.125)

which is the same as y defined in (3.9), for t ∈ [sk+1, ak+1), k ∈ N, with x = xp.
Therefore, system P can be expressed in the form of the interconnection Σ−∆,
with the functions f̄0, h̄0, f̄ , ḡ, h̄, and l̄ defined by (3.34).
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3.8.8 Proof of Lemma 3.9

(1) For t ∈ [0, s0): As per the definition of ∆s in (3.31), we have that

(∆sv)(t) = 0,∀t ∈ [0, s0). (3.126)

Therefore, for all θ ∈ [0, s0), we have

Ss (θ, v(θ), (∆sv) (θ)) = −γ
2
sv
T
(θ)Rsv(θ), (3.127)

implying that indeed

∫

t

0
Ss (θ, v(θ), (∆sv)(θ))dθ ≤ 0. (3.128)

(2) For t ∈ [sk, sk+1), k ∈ N: We have that

∫

t

sk
eβ(θ−a0)(∆sv)

T
(θ)Rs(∆sv)(θ)dθ

= ∫

t

sk

√

eβ(θ−a0)(∆sv)
T
(θ)Rs

√

eβ(θ−a0)(∆sv)(θ)dθ.

(3.129)

Since (∆sv)(sk) = 0, by applying Wirtinger’s inequality [76], we obtain

∫

t

sk
eβ(θ−a0)(∆sv)

T
(θ)Rs(∆sv)(θ)dθ

≤
4(t − sk)

2

π2 ∫

t

sk

d

dθ
(

√

eβ(θ−a0)(∆sv)(θ))
T

Rs
d

dθ
(

√

eβ(θ−a0)(∆sv)(θ))dθ,

(3.130)
with

d

dθ
(

√

eβ(θ−a0)(∆sv)(θ)) =
√

eβ(θ−a0)
d

dθ
(∆sv)(θ) + (∆sv)(θ)

β

2

√

eβ(θ−a0).

(3.131)
As per the definition of ∆s in (3.31), we have that

(∆sv)(θ) = −∫
θ

sk
v(ψ)dψ,∀θ ∈ [sk, sk+1), k ∈ N, (3.132)

implying that d
dθ

(∆sv)(θ) = −v(θ). Therefore,

d

dθ
(

√

eβ(θ−a0)(∆sv)(θ)) =
√

eβ(θ−a0)(−v(θ) +
β

2
(∆sv)(θ)), (3.133)
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implying that

d

dθ
(

√

eβ(θ−a0)(∆sv)
T
(θ))

T

Rs
d

dθ
(

√

eβ(θ−a0)(∆sv)(θ))

= eβ(θ−a0) (−v(θ) +
β

2
(∆sv)(θ))

T

Rs (−v(θ) +
β

2
(∆sv)(θ))

= eβ(θ−a0)(vT (θ)Rsv(θ) −
β

2
vT (θ)Rs(∆sv)(θ) −

β

2
(∆sv)

T
(θ)Rsv(θ)

+
β2

4
(∆sv)

T
(θ)Rs(∆sv)(θ)).

(3.134)
Hence,

d

dθ
(

√

eβ(θ−a0)(∆sv)
T
(θ))

T

Rs
d

dθ
(

√

eβ(θ−a0)(∆sv)(θ))

= eβ(θ−a0)ξ (v(θ), (∆sv)(θ)) ,

(3.135)

where

ξ (v(θ), (∆sv)(θ)) ∶= (vT (θ)Rsv(θ) −
β

2
vT (θ)Rs(∆sv)(θ)

−
β

2
(∆sv)

T
(θ)Rsv(θ) +

β2

4
(∆sv)

T
(θ)Rs(∆sv)(θ)) .

(3.136)
Substituting (3.135) into inequality (3.130), we have for all t ∈ [sk, sk+1), k ∈ N,

∫

t

sk
eβ(θ−a0)(∆sv)

T
(θ)Rs(∆sv)(θ)dθ ≤

4h̄2

π2 ∫

t

sk
eβ(θ−a0)ξ (v(θ), (∆sv)(θ))dθ,

(3.137)
where we have used that (t − sk) ≤ h̄ for all t ∈ [sk, sk+1). Now, for any t ∈
[sk, sk+1), since (∆sv)(t) = 0,∀t < s0 (see (3.31)), we can state that

∫

t

0
eβ(θ−a0)(∆sv)

T
(θ)Rs(∆sv)(θ)dθ = ∫

t

s0
eβ(θ−a0)(∆sv)

T
(θ)Rs(∆sv)(θ)dθ

=
k−1

∑
i=0
∫

si+1

si
eβ(θ−a0)(∆sv)

T
(θ)Rs(∆sv)(θ)dθ

+ ∫

t

sk
eβ(θ−a0)(∆sv)

T
(θ)Rs(∆sv)(θ)dθ

≤
4h̄2

π2
(
k−1

∑
i=0
∫

si+1

si
eβ(θ−a0)ξ (v(θ), (∆sv)(θ))dθ

+∫

t

sk
eβ(θ−a0)ξ (v(θ), (∆sv)(θ))dθ) .

(3.138)
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Therefore,

∫

t

0
eβ(θ−a0)(∆sv)

T
(θ)Rs(∆sv)(θ)dθ ≤

4h̄2

π2 ∫

t

s0
eβ(θ−a0)ξ (v(θ), (∆sv)(θ))dθ.

(3.139)
Since (∆sv)(t) = 0 for all t < s0, and v(t) ∈ Wmp , using the definition of
ξ (v(θ), (∆sv)(θ)) in (3.136), we have ∀t ∈ [0, s0),

4h̄2

π2 ∫

s0

0
eβ(θ−a0)ξ (v(θ), (∆sv)(θ))dθ =

4h̄2

π2 ∫

s0

0
eβ(θ−a0)vT (θ)Rsv(θ)dθ ≥ 0.

(3.140)
Therefore, by adding (3.140) and (3.139), we obtain

∫

t

0
eβ(θ−a0)(∆sv)

T
(θ)Rs(∆sv)(θ)dθ

≤ γ2
s ∫

t

0
eβ(θ−a0)ξ (v(θ), (∆sv)(θ))dθ,∀t ≥ 0,

(3.141)

with γs =
2h̄
π

. Substituting ξ (v(θ), (∆sv)(θ)) from (3.136) in (3.141), we arrive
at

∫

t

0
Ss (θ, v(θ), (∆sv)(θ))dθ ≤ 0, (3.142)

where Ss is given by (3.36).

3.8.9 Proof of Lemma 3.10

From the definition of ∆d in (3.32), we have that

(∆dw)(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0,∀t ∈ [0, a0),

0,∀t ∈ [ak, sk+1), k ∈ N
− ∫

sk
sk−1 w(θ)dθ,∀t ∈ [sk, ak), k ∈ N⋆.

(3.143)

(1) For all t ∈ [0, s1): We have (∆dw)(θ) = 0 for all θ ∈ [0, s1), thereby giving

Sd (θ,w(θ), (∆dw)(θ)) = −eβ(θ−a0)wT (θ)Rdw(θ)dθ ≤ 0,∀θ ∈ [0, s1), (3.144)

which implies

∫

t

0
Sd (θ,w(θ), (∆dw)(θ))dθ ≤ 0,∀t ∈ [0, s1). (3.145)

(2) For all t ≥ s1: If t ∈ [sk, ak)k∈N⋆ , by virtue of Jensen’s inequality, and using
(3.143), we have that

eβ(t−a0)(∆dw)
T
(t)Rd(∆dw)(t) ≤ h̄eβ(t−a0) ∫

sk

sk−1
wT (θ)Rdw(θ)dθ, (3.146)
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as here we used that sk−sk+1 ≤ h̄,∀k ∈ N⋆. Let t ∈ [sN , sN+1)N∈N⋆ , which implies
that

∫

t

s1
eβ(θ−a0)(∆dw)

T
(θ)Rd(∆dw)(θ)dθ

=
N−1

∑
k=1

(∫

ak

sk
eβ(θ−a0)(∆dw)

T
(θ)Rd(∆dw)(θ)dθ

+∫

sk+1

ak
eβ(θ−a0)(∆dw)

T
(θ)Rd(∆dw)(θ)dθ)

+

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∫
t
sN
eβ(θ−a0)(∆dw)T (θ)Rd(∆dw)(θ)dθ, t ∈ [sN , aN)

∫
aN
sN

eβ(θ−a0)(∆dw)T (θ)Rd(∆dw)(θ)dθ

+ ∫
t
aN
eβ(θ−a0)(∆dw)T (θ)Rd(∆dw)(θ)dθ, t ∈ [aN , sN+1).

(3.147)

We know that for all t ∈ [ak, sk+1)k∈N, (∆dz)(t) = 0. Additionally, using the
upper bound in (3.146), we have that

∫

t

s1
eβ(θ−a0)(∆dw)

T
(θ)Rd(∆dw)(θ)dθ

≤
N−1

∑
k=1

(h̄∫
ak

sk
eβ(θ−a0) (∫

sk

sk−1
wT (η)Rdw(η)dη)dθ)

+

⎧⎪⎪
⎨
⎪⎪⎩

h̄ ∫
t
sN
eβ(θ−a0) (∫

sN
sN−1 w

T (η)Rdw(η)dη)dθ, t ∈ [sN , aN)

h̄ ∫
aN
sN

eβ(θ−a0) (∫
sN
sN−1 w

T (η)Rdw(η)dη)dθ, t ∈ [aN , sN+1).

(3.148)
Next, we simplify each of the integrals present in the right side of the inequality
above. First, consider the term

h̄∫
ak

sk
eβ(θ−a0) (∫

sk

sk−1
wT (η)Rdw(η)dη)dθ

= h̄e−βa0 ∫
ak

sk
eβθ (∫

sk

sk−1
wT (η)Rdw(η)dη)dθ.

(3.149)

Let θ = sk + s ⇒ dθ = ds. This leads to

h̄∫
ak

sk
eβ(θ−a0) (∫

sk

sk−1
wT (η)Rdw(η)dη)dθ

≤ h̄e−βa0 ∫
τ̄

0
eβ(sk+s) (∫

sk

sk−1
wT (η)Rdw(η)dη)ds.

(3.150)
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Since s ∈ [0, τ̄] in (3.150), it can be stated that eβ(sk+s) ≤ eβ(sk+τ̄). Hence,

h̄e−βa0 ∫
τ̄

0
eβ(sk+s)(∫

sk

sk−1
wT (η)Rdw(η)dη)ds

≤ h̄eβ(−a0+τ̄) ∫
τ̄

0
eβsk(∫

sk

sk−1
wT (η)Rdw(η)dη)ds

≤ h̄eβ(−a0+τ̄) ∫
τ̄

0
(∫

sk

sk−1
eβskwT (η)Rdw(η)dη)ds.

(3.151)

Here, η ∈ [sk−1, sk], which allows us to make the upper bounding eβsk ≤ eβ(η+h̄),
thereby resulting in

h̄eβ(−a0+τ̄) ∫
τ̄

0
(∫

sk

sk−1
eβskwT (η)Rdw(η)dη)ds

≤ h̄eβ(τ̄+h̄) ∫
τ̄

0
(∫

sk

sk−1
eβ(η−a0)wT (η)Rdw(η)dη)ds

≤ h̄τ̄ eβ(τ̄+h̄) ∫
sk

sk−1
eβ(η−a0)wT (η)Rdw(η)dη.

(3.152)

Thus, by combining (3.150)-(3.152), we have that

h̄∫
ak

sk
eβ(θ−a0) (∫

sk

sk−1
wT (η)Rdw(η)dη)dθ

≤ h̄τ̄ eβ(τ̄+h̄) ∫
sk

sk−1
eβ(η−a0)wT (η)Rdw(η)dη.

(3.153)

Substituting this in (3.148) gives

∫

t

s1
eβ(θ−a0)(∆dw)

T
(θ)Rd(∆dw)(θ)dθ

≤
N−1

∑
k=1

(h̄τ̄ eβ(τ̄+h̄) ∫
sk

sk−1
eβ(η−a0)wT (η)Rdw(η)dη)

+ h̄τ̄ eβ(τ̄+h̄) ∫
sN

sN−1
eβ(η−a0)wT (η)Rdw(η)dη

≤ h̄τ̄ eβ(τ̄+h̄) ∫
sN

s0
eβ(η−a0)wT (η)Rdw(η)dη.

(3.154)
Therefore,

∫

t

s1
eβ(θ−a0)(∆dw)

T
(θ)Rd(∆dw)(θ)dθ

≤ h̄τ̄ eβ(τ̄+h̄) ∫
sN

s0
eβ(η−a0)wT (η)Rdw(η)dη.

(3.155)
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Since (∆dw)(t) = 0 for t < s1 (see (3.32)), we have that

∫

t

s1
eβ(θ−a0)(∆dw)

T
(θ)Rd(∆dw)(θ)dθ

= ∫

t

0
eβ(θ−a0)(∆dw)

T
(θ)Rd(∆dw)(θ)dθ.

(3.156)

Additionally, since w ∈Wmp , we can state

eβ(η−a0)wT (η)Rdw(η) ≥ 0,∀η ≥ 0, (3.157)

thereby implying that

h̄τ̄ eβ(τ̄+h̄) ∫
sN

s0
eβ(η−a0)wT (η)Rdw(η)dη

≤ h̄τ̄ eβ(τ̄+h̄) ∫
t

0
eβ(η−a0)wT (η)Rdw(η)dη.

(3.158)

Consequently, we can rewrite (3.155) as

∫

t

0
eβ(θ−a0)(∆dw)

T
(θ)Rd(∆dw)(θ)dθ

≤ h̄τ̄ eβ(τ̄+h̄) ∫
t

0
eβ(η−a0)wT (η)Rdw(η)dη.

(3.159)

By rearranging the terms, we have

∫

t

0
Sd (θ,w(θ), (∆dw)(θ))dθ ≤ 0, ∀t ≥ 0, (3.160)

where Sd (θ,w(θ), (∆dw)(θ)) is given by (3.38).

3.8.10 Proof of Theorem 3.12

Let us recall the linear sampled-data system PL described in Section 3.4.3 by
(3.23). The sampling-induced error is given by

es(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0,∀t ∈ [0, s0),

Kx(sk) −Kx(t),∀t ∈ [sk, sk+1), k ∈ N,

= (∆s(Kẋ)) (t),

(3.161)

where ∆s is given by (3.31). Similarly, the delay-induced error is given by

ed(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0,∀t ∈ [0, a0),

0,∀t ∈ [ak−1, sk), k ∈ N⋆,

Kx(sk−1) −Kx(sk),∀t ∈ [sk, ak), k ∈ N⋆,

= (∆d(Kẋ)) (t),

(3.162)
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where ∆d is given by (3.32). Additionally, the functions defined in (3.34) are
given by

f̄0(x(t)) = Ax(t), h̄0(x(t)) = [
KAx(t)
KAx(t)

] ,

f̄(x(t)) = Āx(t), ḡ(x(t)) = [B B] ,

h̄(x(t)) = [
KĀx(t)
KĀx(t)

] , l̄(x(t)) = [
KB
KB

] .

(3.163)

Let us consider that condition (3.39) holds. Then, we proceed to prove that
the assumptions introduced in Theorem 3.1 will hold for the storage function
V (x) = xTPx and the supply function S ∶ R+ ×R2n ×R2n → R given by

S (t, y(t), ω(t)) = Ss (t, [I 0] y(t), [I 0]ω(t)) + Sd (t, [0 I] y(t), [0 I]ω(t))

= Ss (t, y1(t), es(t)) + Sd (t, y2(t), ed(t))
(3.164)

where Ss and Sd are defined by (3.36) and (3.38), respectively, with β = α.
Additionally, based on the functions given in (3.163), we have y1(t) = y2(t) =

Kẋ(t). Let us now show that the assumptions in Theorem 3.1 are validated.

(1) Satisfying Assumption 1, i.e., (3.11): By virtue of Lemmas 3.9 and 3.10, we
have that

∫

t

0
Ss (θ, y1(θ), (∆sy1)(θ))dθ ≤ 0, ∀t ≥ 0, (3.165)

and

∫

t

0
Sd (θ, y2(θ), (∆dy2)(θ))dθ ≤ 0, ∀t ≥ 0. (3.166)

Consequently, as per the definition of the supply function in (3.164), we obtain

∫

t

0
S (θ, y(θ), ω(θ))dθ ≤ 0,∀t ≥ 0. (3.167)

(2) Satisfying Assumption 2, i.e., (3.12): With V (x) = xTPx, P = PT > 0 and
x ∈ Rn, we have

δmin(P )∥x∥2
≤ xTPx ≤ δmax(P )∥x∥2, (3.168)

implying Assumption 2 is satisfied with q = 2, c1 = δmin(P ) and c2 = δmax(P ).

(3) Satisfying Assumption 3, inequality (3.13): Consider the function

S (t, y(t), ω(t)) given in (3.164). Then, we need to prove that

− S (t, y(t), ω(t)) ≤ ρV (x(t)) ,∀t ∈ [0, a0). (3.169)

We proceed to prove this inequality by considering the time intervals [0, s0) and
[s0, a0) separately.
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For all t ∈ [0, s0): Using the definition of system Σ in (3.9), (3.34), and the
operator ∆ defined in (3.10), (3.32) we have that

y(t) = h̄0(x(t)) = [
KAx(t)
KAx(t)

] , (3.170)

and

ω(t) = [
es(t)
ed(t)

] = [
0
0
] ,∀t ∈ [0, s0). (3.171)

Hence, for all t ∈ [0, s0), we have

−S (t, y(t), ω(t)) = −S (t, h̄0(x(t)),0)

= − (Ss (t,KAx(t),0) + Sd (t,KAx(t),0))

= eα(t−a0) (xT (t)(KA)
T [γ2

sRs + γdRd] (KA)x(t)) .

(3.172)

Therefore,
− S (t, y(t), ω(t)) ≤ ρ1V (x(t)), (3.173)

with

ρ1 =
e−ατ0δmax [(KA)T [γ2

sRs + γdRd] (KA)]

δmin(P )
, (3.174)

where γs =
2h̄
π

and γd = h̄τ̄ e
α(h̄+τ̄).

For all t ∈ [s0, a0): From (3.163), we have y(t) = [
y1(t)
y2(t)

] with

y1(t) = y2(t) =KAx(t), (3.175)

and

ω(t) = [
es(t)
ed(t)

] = [
Kx(s0) −Kx(t)

0
] . (3.176)

Since the system is in open loop for all t ∈ [s0, a0), we know

x(s0) = e
A(s0−t)x(t). (3.177)

Therefore, we have that

[
es(t)
ed(t)

] = [
K [eA(s0−t) − I]x(t)

0
] ,∀t ∈ [s0, a0). (3.178)

Now, consider the function Ss defined in (3.36). Since we have already shown in
Lemma 3.7 that (∆sy1)(t) = es(t), we have that

Ss (t, y1(t), (∆sy1)(t)) = Ss (t, y1(t), es(t))

= eα(t−a0) [
y1(t)
es(t)

]

T

[
−γ2

sRs γ2
s
α
2
Rs

γ2
s
α
2
Rs (1 − γ2

s
α2

4
)Rs

] [
y1(t)
es(t)

] ,

(3.179)
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and thus, from (3.175) and (3.178), we get

Ss (t, y1(t), es(t)) = Ss(t,KAx(t),K [eA(s0−t) − I]x(t))

= xT (t)M(t)x(t),∀t ∈ [s0, a0),
(3.180)

where

M(t) = eα(t−a0) [
KA

K [eA(s0−t) − I]
]

T

[
−γ2

sRs γ2
s
α
2
Rs

γ2
s
α
2
Rs (1 − γ2

s
α2

4
)Rs

] [
KA

K [eA(s0−t) − I]
] .

(3.181)
Similarly, considering the function Sd defined by (3.38), we have that

Sd (t, y2(t), (∆dy2)(t)) = Sd (t, y2(t), ed(t))

= eα(t−a0) [
y2(t)
ed(t)

]

T

[
−γdRd 0

0 Rd
] [
y2(t)
ed(t)

] ,
(3.182)

and thus, from (3.175) and (3.178),

Sd (t, y2(t), ed(t)) = Sd (t,KAx(t),0)

= xT (t)N (t)x(t),∀t ∈ [s0, a0),
(3.183)

with
N (t) = −γde

α(t−a0)(KA)
TRd(KA). (3.184)

Therefore, we have the total supply function S satisfying

−S (t, y(t), ω(t)) = −Ss (t, y1(t), es(t)) − Sd (t, y2(t), ed(t))

= xT (t)M(t)x(t),
(3.185)

where
M(t) = −M(t) −N (t). (3.186)

Hence, for all t ∈ [s0, a0), we can state that

− S (t, y(t), ω(t)) ≤ ρ2V (x(t)), (3.187)

where

ρ2 =

max
θ∈[s0,a0]

{δmax [M(θ)]}

δmin(P )
. (3.188)

Then, from (3.173) and (3.187), we have

− S (t, y(t), ω(t)) ≤ ρV (x(t)),∀t ∈ [0, a0), (3.189)

where ρ = max{ρ1, ρ2} with ρ1 and ρ2 given by (3.174) and (3.188), respectively.
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(4) Satisfying Assumption 3, inequality (3.14): We have V (x(t)) = x(t)TPx(t)

for all t ≥ 0. For all t ∈ [0, a0), since ẋ(t) = f̄0(x(t)) = Ax(t), it holds that

V̇ (x(t)) = x(t)T [ATP + PA]x(t)

≥
δmin (ATP + PA)

δmax(P )
V (x(t)).

(3.190)

Therefore, it is clear that inequality (3.14) is satisfied for any λ ≤
δmin(A

TP+PA)

δmax(P )
.

(5) Satisfying Assumption 3, inequality (3.15):
Consider the function

W (t) = V̇ (x(t)) + αV (x(t)) − e−α(t−a0)S(t, y(t), e(t)), (3.191)

defined for all t ≥ a0 with V (x) = xTPx, and the function S defined by (3.164).
Clearly, the inequality in (3.15) holds if W (t) ≤ 0, for all t ≥ a0. Using the
definitions of Ss (t, y1(t), es(t)) and Sd (t, y2(t), ed(t)) in (3.179) and (3.182),
respectively, and from (3.163), since y1(t) = y2(t) =Kẋ(t), for all t ≥ 0, we have
that

S (t, y(t), ω(t)) = eα(t−a0)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Kẋ(t)
es(t)
ed(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T

Ψ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Kẋ(t)
es(t)
ed(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.192)

with,

Ψ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−γ2
sRs − γdRd γ2

s
α
2
Rs 0

γ2
s
α
2
Rs (1 − γ2

s
α2

4
)Rs 0

0 0 Rd

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.193)

From the system dynamics defined by (3.9) and (3.163), we have that

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Kẋ(t)
es(t)
ed(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

KĀ KB KB
0 I 0
0 0 I

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x(t)
es(t)
ed(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [
KĀ KB̄

0 I
]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x(t)
es(t)
ed(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

(3.194)

with Ā = A +BK and B̄ = [B B]. Therefore, from (3.192), we have that

S (t, y(t), ω(t)) = eα(t−a0)
⎡
⎢
⎢
⎢
⎢
⎢
⎣

x(t)
es(t)
ed(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T

N

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x(t)
es(t)
ed(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.195)

where

N = [
KĀ KB̄

0 I
]

T

Ψ [
KĀ KB̄

0 I
] . (3.196)
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Therefore, for all t ≥ a0, we have that

W (t) = V̇ (x(t)) + αV (x(t)) − e−α(t−a0)S(t, y(t), e(t))

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x(t)
es(t)
ed(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T ⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ĀTP + PĀ PB PB
BTP 0 0
BTP 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ α

⎡
⎢
⎢
⎢
⎢
⎢
⎣

P 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−N

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x(t)
es(t)
ed(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x(t)
es(t)
ed(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T

Γ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x(t)
es(t)
ed(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

(3.197)
with

Γ = [
ĀTP + PĀ + αP PB̄

B̄TP 0
] + [

KĀ KB̄
0 I

]

T

Φ [
KĀ KB̄

0 I
] , (3.198)

with Ā = A + BK, B̄ = [B B], and Φ = −Ψ described in (3.40). A sufficient
condition for W (t) ≤ 0,∀t ≥ a0 is Γ ≤ 0, and guaranteed by (3.39). Consequently,
we have proved that the inequality (3.15) is satisfied.

We have shown that all the assumptions of Theorem 3.1 hold for V (x) =

xTPx and S(t, y(t), ω(t)) defined by (3.164) and hence, using Theorem 3.1,
system P is exponentially stable with a decay rate greater than or equal to α/2.
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Chapter 4

Exponential Synchronization of Networked
Systems Under Asynchronous

Sampled-Data Coupling

This chapter presents a novel approach towards synchronization analysis of non-
linear networked systems, directionally coupled via a generic network topol-
ogy, under asynchronous, aperiodic sampled-data linear coupling. The syn-
chronization dynamics of the networked system is remodelled as a feedback-
interconnection of an operator that captures the continuous-time synchronization
dynamics, i.e., in the absence of sampled data transmission, and an operator that
accounts for these communication constraints. By studying the properties of this
feedback-interconnection in the framework of dissipativity theory, we provide a
novel criterion that guarantees exponential synchronization. The provided crite-
rion also aids in deciding the trade-off between bounds on time-varying, uncertain
sampling intervals, the coupling gain, and the desired transient rate of synchro-
nization, while taking into account the network topology. The theoretical results
are illustrated using a networked Fitzhugh-Nagumo neuron system.

4.1 Introduction

In many natural and engineering systems, the phenomenon of synchronization
has been investigated by researchers and scientists from various fields. Typical
examples of synchronization include flashing fireflies, firing neurons, cooperative
control of multi-agent systems, coupling of semiconductor lasers, etc. [74], [118],
[126]. In control theory, synchronization of networked nonlinear systems is a
topic that has specifically garnered attention owing to its significance in neural
processes, communication systems, electronic circuits, etc. [27], [34], [91]. Such
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networked scenarios often result in individual sub-systems interacting direction-
ally or bidirectionally. In comparison to weaker definitions of synchronization,
i.e., in the form of consensus or synchronization to a set of equilibria, synchro-
nization in the sense of asymptotic matching of time-varying system solutions like
persistent oscillations, has been shown to be a more complex and generic prob-
lem [104]. Synchronization in this sense has previously been studied by taking
network effects such as time-delay into account [103], [123], [125]. Existing works
consider modelling the effects on communication links between sub-systems. For
example, in [82], [124], continuous-time delay models are used and the conditions
for synchronization is related to the topology of the network. However, when
digital networks or sampled-data networks are used, asynchrony-induced com-
plexities are known to arise [53], [129]. It is known that in large-scale sampled-
data networks (also encountered in network controlled systems), we have to deal
with several network effects. For example, transmissions can be aperiodic be-
cause of data drop-outs, sensors and actuators need not be synchronized, etc.
In the control systems community, it is well known that these effects can induce
asynchrony that leads to performance loss or even instability [55], [57], [134].
In the scope of large-scale networks exhibiting synchronization properties, the
complexities in synchronization analysis due to the aforementioned network ef-
fects and its consequences (asynchronous coupling), has received less attention.
More specifically, the associated synchronization problem in large-scale networks
has previously been studied only in the synchronous sampling case, or in cases
wherein individual sub-systems are linear [72], [77], [117]. In this chapter, we
will study the effect of asynchronous sampled-data coupling on synchronization
in networks with nonlinear sub-systems. We will consider multi-agent nonlinear
systems, connected via a generic network topology, wherein individual systems
transmit information over a networked communication channel, asynchronously
at possibly different (time-varying and uncertain) sampling intervals.

Synchronization problems in sampled-data systems have been studied in re-
cent years, and different approaches have been proposed to study the relation
between sampling period, coupling strength, and synchronization properties [59],
[110]. Some of the effects of sampled-data communication in controlled synchro-
nization environment have been shown in [110] for bidirectionally coupled two-
agent systems with synchronous transmission. In existing results, it is typically
considered that individual systems have synchronous sampling sequences that
are constant or time-varying, implying that all the signals are transmitted at the
same instant [72], [117]. However, in realistic settings, individual systems usually
transmit information at different frequencies over a network, depending upon the
communication channel, data traffic, etc. This introduces time-varying and dif-
ferent sampling/communication frequencies for individual links, which leads to
asynchronous communication. In the case of nonlinear networked systems cou-
pled via constant time-delayed coupling laws, conditions for synchronization are
available in literature [123].
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The main contribution of this chapter is a novel approach towards synchro-
nization analysis of a generic networked nonlinear systems, directionally cou-
pled via asynchronous, aperiodic sampled-data communication. We consider
the effects of sampling as perturbations to the nominal continuous-time syn-
chronization dynamics (in the absence of sampling events), for which conditions
guaranteeing synchronization already exist in literature [103], [123]. By using
tools based on input-output methods and dissipativity theory previously used to
analyse stability of sampled-data systems [93], we provide a novel criterion that
guarantees exponential synchronization in a generic networked nonlinear system,
directionally coupled via asynchronous, aperiodic, sampled-data synchronizing
laws. In practical scenarios, it is desirable to have a certain measure of system
performance. In synchronization problems, this implies achieving a specific tran-
sient rate of synchronization, which also depends on the system dynamics, and
the network topology. The result provided in this chapter also takes the rate of
synchronization into account, and aids in quantitatively analyzing the trade-offs
between coupling gain, rate of synchronization, and the maximum bound on
the different (time-varying, uncertain) sampling intervals, while considering the
network topology. In the special case of periodic sampling, the results in our
chapter are related to the ones in [123] concerning constant time-delay systems,
since it is known that sampling can be modelled as a special case of (time-
varying, resetting) delay. However, an extension of the results in [123] to the
case of asynchronous, aperiodic sampling does not exist. Moreover, conditions
for stability of system solutions provided in [123], do not hold in the case of
asynchronous, aperiodic, sampled-data transmission.

The remainder of this chapter has been structured as follows. In Section
4.2, we introduce the problem setting under consideration, which consists of
a generic nonlinear networked system, directionally coupled via asynchronous,
aperiodic, sampled-data coupling laws. In Section 4.3, we introduce assump-
tions on individual system properties, and provide a preliminary result stating
conditions guaranteeing uniform ultimate boundedness of the networked system
solution. Then, we introduce existing results guaranteeing synchronization in
the absence of sampled-data effects. In Section 4.4, we remodel the synchro-
nization dynamics of the networked nonlinear system under consideration as a
feedback-interconnection between a continuous-time system operator that cap-
tures the synchronization dynamics in the absence of sampling events, and an
operator that captures the sampling-induced effects. In Section 4.5, we provide
the main result of this chapter, where we use dissipativity theory to study the
feedback interconnection introduced in Section 4.4, and provide a novel criterion
that guarantees exponential synchronization of the networked nonlinear system.
In Section 4.6, we provide a numerical example illustrating the application of
our result.

Notations: R is the set of all real numbers, implying Rn is the set of all
n-dimensional real vectors. The set of all natural numbers is denoted by N. For
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an integer n ≥ 1, In denotes the n × n unit matrix. The dimension n of a set
X = {1,2, . . . , n} is denoted by dim(X). The Euclidean norm of a vector z ∈ Rn

is denoted by ∥z∥ =
√
zT z, where zT denotes the transposition of z.

4.2 Problem Statement

Consider a networked system with individual sub-system dynamics given by

ẋi(t) = f(xi(t)) +Bui(t)

yi(t) = Cxi(t), i ∈ {1,2 . . . ,N},∀t ≥ 0,
(4.1)

where xi ∈ Rn, ui, yi ∈ Rm are the state, input, and output, of the ith system,
respectively. The function f ∶Rn → Rn is a sufficiently smooth vector field, and
B and C are matrices with appropriate dimensions, with CB =∶ b ∈ Rm×m and b
being positive definite and, without loss of generality, diagonal. This implies the
system is considered to be of relative degree one. The interconnection between
the N sub-systems is defined by the adjacency matrix

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 a12 . . . a1N

a21 0 . . . a2N

⋮ ⋮ ⋱ ⋮

aN1 aN2 . . . 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.2)

Here, the constant aij ≥ 0 represents the weight of interconnection from the ith

sub-system to the jth sub-system, for j ≠ i. Only if there is no connection from
the ith sub-system to the jth sub-system, then aij = 0. The systems (4.1) whose
interconnections are given by (4.2), can be viewed as a directed graph G = (V,E),
where the vertices V are individual sub-systems, and E is the set of (weighted)
edges. The edge E(i,j) exists if and only if aij ≠ 0. Throughout the chapter, E(i,j)
denotes the weighted edge (interconnection) from the ith sub-system to the jth

sub-system.

Definition 4.1. Any sequence of edges that connect the ith and jth sub-systems
is referred to as a directed path from the ith sub-system to the jth sub-system.

Assumption 4.2. The directed graph G is strongly connected, i.e., for any ith

and jth sub-systems, i, j ∈ {1,2, . . . ,N}, there exists a directed path from the ith

sub-system to jth sub-system, and a directed path from the jth sub-system to ith

sub-system.

The output of the ith sub-system is transmitted to the jth sub-system, j ≠ i,
only at instants given by the sampling sequence

s
kij+1
ij = s

kij
ij + h

kij
ij , (4.3)
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with the sampling interval h
kij
ij ∈ [hij , h̄ij], kij ∈ N, where hij , h̄ij are the upper

and lower sampling interval bounds, respectively, satisfying 0 ≤ hij ≤ h̄ij . With-

out loss of generality, we consider s0
ij = 0, i = {1,2 . . . ,N}, j ≠ i. This refers to

situations wherein the initial information transmission is synchronous, but due
to constraints imposed by the network, asynchronous communication strategies
come into play immediately after that.

Assumption 4.3. The ith sub-system has access to local output information

yi(t) at time instants t = s
kji
ji , kji ∈ N, where j, i = {1,2, . . . ,N}, i ≠ j.

This assumption represents scenarios in which individual sub-systems could
be synchronously sampling at identical high frequencies, but transmit infor-
mation asynchronously at different (and time-varying) frequencies, due to con-
straints imposed by the communication network. The local information, which
is not transmitted over the network, can then be considered to be instanta-
neously available locally, and can hence be used for local feedback, when the
output of the other system is received over the network. A second scenario jus-
tifying Assumption 4.3 is that local measurements at the ith sub-system could
be performed in an event-based fashion, as soon as the sampled output of the
jth sub-system is received. Under Assumption 4.3, we define the coupling laws
between the sub-systems, as supported by the graph interconnection structure,
as follows:

ui(t) = σ ∑
j∈E(j,i)

aji(ŷji(t) − ỹji(t)), (4.4)

where constant σ > 0 is called the coupling strength, and

ŷji(t) = yj(s
kji
ji ),∀t ∈ [s

kji
ji , s

kji+1
ji ),

ỹji(t) = yi(s
kji
ji ),∀t ∈ [s

kji
ji , s

kji+1
ji ),

(4.5)

for all i, j ∈ V, j ≠ i, kji ∈ N. Here, ŷji is the information transmitted from the jth

sub-system, to the ith sub-system. Similarly, ỹji is the local information at the
level of the ith sub-system. Let us now formulate the considered synchronization
problem.

Definition 4.4. The state-synchronization error between the ith and jth sub-
systems in the coupled system (4.1), (4.4), denoted by exij(t), is given by

exij(t) ∶= xi(t) − xj(t), i, j ∈ {1,2, . . . ,N}. (4.6)

Definition 4.5. The coupled system given by (4.1), (4.4) is said to exponentially
synchronize if the state-synchronization error satisfies

∥exij(t)∥ ≤ ρe
−αt

∥exij(0)∥,∀t ≥ 0, (4.7)

where ρ,α > 0, exij(0) ∈ Rn, for all i, j ∈ {1,2, . . . ,N}.
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The goal of this chapter is to analyse the exponential synchronization of the
system (4.1), (4.4) in terms of subsystem dynamics and interaction properties,
i.e., sampling, coupling strength and network structure.

4.3 Preliminary Results on Boundedness and Synchronization

Before we analyse the synchronization properties of system (4.1), (4.4), it is
important to establish conditions under which the solutions of the networked
system will remain bounded. In the sense of Definition 4.5, the solution bound-
edness does not seem to play any role. However, from a practical perspective, it
does not make sense to achieve synchronization in systems that are unbounded.
This applies to the sampling-free case as well, wherein the boundedness result is
obtained by letting nonlinear terms be dominated by linear terms on compact
sets. In literature, Krasovskii-type results are often used to prove boundedness
of solutions for time-delay systems [123]. However, for interconnected systems
with time-varying delay, this problem becomes challenging since this approach
is dependent on the rate of change of time-varying delay. On the other hand,
Razumikhin-type results, which we will be using in this section, do not pose this
challenge. First, we will introduce an assumption of semi-passivity on individ-
ual sub-system dynamics. Then, by exploiting this semi-passivity property, we
provide a Razumikhin-type result that guarantees boundedness of solutions of
system (4.1), (4.4).

4.3.1 Boundedness of Solutions

In this section, in order to establish exponential synchronization of the coupled
system (4.1), (4.4), in the sense of Definition 4.5, we introduce an assumption
on the system dynamics. First, we define the semi-passivity property.

Definition 4.6. [103], [136] Consider a system

ẋ = f(x) + g(x)u, y = h(x), (4.8)

where state x ∈ Rn, input u ∈ Rm, output y ∈ Rm, and f, g and h are sufficiently
smooth functions. Suppose there exists a positive definite storage function V ∈

Cr ∶ Rn → R>0, V (0) = 0, r ≥ 1, such that the following dissipation inequality

V̇ (x) ≤ yTu −H(x) (4.9)

holds where H ∶ Rn → R. The system (4.8) is called

1. Cr-semi-passive if (4.9) holds with the function H(⋅) ≥ 0 outside a ball
B ⊂ Rn with radius ρ̂, i.e.,

∃ρ̂ > 0, ∥x∥ ≥ ρ̂ Ô⇒ H(x) ≥ ψ(∥x∥), (4.10)

with some non-negative continuous function ψ(⋅) defined for all ∥x∥ ≥ ρ̂.
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2. strictly Cr-semi-passive if (4.9) holds with the function H(⋅) > 0 outside
the ball B ⊂ Rn.

Assumption 4.7. Each sub-system in (4.1) is strictly C1-semi-passive, i.e.,
there exists a radially unbounded positive definite storage function V ∈ C1(Rn)
whose derivative along solutions of (4.1) satisfies

V̇ (xi(t)) ≤ y
T
i (t)ui(t) −H(xi(t)), (4.11)

where H ∶ Rn → R is a scalar continuous function that is positive outside some
ball Bi = {xi(t) ∶ ∥xi(t)∥ ≤ ρ}, of radius ρ > 0:

∃ρ > 0,∀∥xi(t)∥ ≥ ρ Ô⇒ H(xi(t)) ≥ ψ(∥xi(t)∥), (4.12)

for some continuous positive function ψ(∥xi(t)∥) defined for ∥xi(t)∥ ≥ ρ.

Note that since, under Assumption 4.7, the function H is continuous, we can
define

η = ∣ min
∥xi∥≤ρ

H(xi)∣ ≥ 0. (4.13)

Now, by using this constant η, and by exploiting Assumption 4.7, we provide the
following result guaranteeing the ultimate boundedness of solutions of system
(4.1), (4.4).

Theorem 4.8. Consider system (4.1), (4.4). Suppose each sub-system i, i ∈
{1,2, . . . ,N}, satisfies Assumption 4.7, with V (xi) = x

T
i Pxi, ρ > 0, and H(xi(t))

satisfying (4.12) with

ψ(∥xi(t)∥) = σγN∥xi(t)∥
2

N

∑
i,j=1

aji +Nη, (4.14)

and

γ = λmax(C
TC)(1 +

κ

2

max(eig(P ))

min(eig(P ))
) , (4.15)

with constant κ > 1, and η given by (4.13).Then, the solutions of the closed-loop
system (4.1),(4.4) are uniformly ultimately bounded.

Proof. We begin the proof by defining a new time-sequence {sk}, k ∈ N, that

orders all the sampling-instants of the overall system, i.e., {s
kij
ij }, kij ∈ N, i, j ∈

{1,2, . . . ,N}, in ascending order. Therefore, we define

s0
= 0,

sk+1
∶= min

i,j
{s
kij
ij ∶ s

kij
ij > sk, kij ∈ N},

(4.16)
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for k ∈ N. In order to prove ultimate boundedness of the solution x(t) =

[xT1 (t) xT2 (t) . . . xTN(t)]
T

under the conditions of the theorem, we will es-

tablish the boundedness of solutions for all t ∈ [sk, sk+1), and for all k ∈ N, and,
consequently, for all t ≥ 0. Let us define

W (x) = V (x1) + V (x2) + ⋅ ⋅ ⋅ + V (xN), (4.17)

where V (xi) = x
T
i Pxi, i ∈ {1,2, . . . ,N}. The main idea of this proof is to show

that for all t ∈ [sk, sk+1), k ∈ N, if W (x(t)) is growing with respect to previous
values (these values will be detailed later in the proof), and if ∥x∥ > Nρ (implying
∥xi∥ > ρ for at least one of the sub-systems i ∈ {1,2, . . . ,N}), then under the
conditions of the theorem, Ẇ < 0 will be guaranteed. To that end, we will start
by exploiting Assumption 4.7. Consider the term yi(t)ui(t), i ∈ {1,2, . . . ,N}, in
(4.11). From the definition of the coupling law in (4.4), and by using Young’s
inequality, we have,

yTi (t)ui(t) = σy
T
i (t)

N

∑
j=1

aji(ŷji(t) − ỹji(t))

= σ
N

∑
j=1

aji (y
T
i (t)ŷji(t) − y

T
i (t)ỹji(t))

≤ σ
N

∑
j=1

aji (∥yi(t)∥
2
+

1

2
(∥ŷji(t)∥

2
+ ∥ỹji(t)∥

2
)) ,

(4.18)

where ŷji(t) and ỹji(t) are given by (4.5). From (4.16), we know that the
sampling sequence {sk}, k ∈ N, is defined such that for all t ∈ [sk, sk+1), every
ŷji(t) and ỹji(t) will be constant, with ŷji(t) = ŷji(s

k) and ỹji(t) = ỹji(s
k),

respectively. This is illustrated in Figure 4.1 for an exemplary 3−agent system
connected via a ring topology, i.e., the transmitted outputs are ŷ12, ŷ23 and ŷ31.
Therefore, from (4.18), for all t ∈ [sk, sk+1), k ∈ N, we have that

yTi (t)ui(t) ≤ σ
N

∑
j=1

aji (∥yi(t)∥
2
+

1

2
(∥ŷji(s

k
)∥

2
+ ∥ỹji(s

k
)∥

2
)) . (4.19)

Let k⋆ji denote the index of the last instant when information was transmitted

from sub-system j to sub-system i before or at sk, i.e., s
k⋆ji
ji ≤ sk . Therefore,

ŷji(s
k
) = ŷji(s

k⋆ji
ji ) = yj(s

k⋆ji
ji ),∀t ∈ [sk, sk+1

), (4.20)

and

ỹji(s
k
) = ỹji(s

k⋆ji
ji ) = yi(s

k⋆ji
ji ),∀t ∈ [sk, sk+1

). (4.21)
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Figure 4.1: At the global level, between any two sampling instants sk, all the
transmitted signals over the network are constant. This is illustrated using ex-
emplary transmitted signals ŷ12, ŷ23 and ŷ31 in a three-agent network connected
via a ring topology.

Consequently, from (4.19), for all t ∈ [sk, sk+1), we obtain

yTi (t)ui(t) ≤ σ
N

∑
j=1

aji (∥yi(t)∥
2
+

1

2
(∥yj(s

k⋆ji
ji )∥

2
+ ∥yi(s

k⋆ji
ji )∥

2
))

≤ σ
N

∑
j=1

aji (∥y(t)∥
2
+

1

2
∥y(s

k⋆ji
ji )∥

2
) ,

(4.22)

where y = [yT1 yT2 . . . yTN ]
T

. Let us define the index k⋆ such that

∥y(sk
⋆
)∥ = max

i,j∈{1,2,...,N}
{∥y(s

k⋆ji
ji )∥}. (4.23)

Using this index, from (4.22), for all t ∈ [sk, sk+1), we have that

yTi (t)ui(t) ≤ σ (∥y(t)∥2
+

1

2
∥y(sk

⋆
)∥

2
)
N

∑
j=1

aji. (4.24)

Note that multiple k⋆ may exist for which (4.23) holds. Nevertheless, (4.24)
holds for any such k⋆. Using the system definition (4.1), in particular that
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yi = Cxi, we have

yTi (t)ui(t) ≤ σλmax(C
TC) (∥x(t)∥2

+
1

2
∥x(sk

⋆
)∥

2
)
N

∑
j=1

aji. (4.25)

We will exploit inequality (4.25) later.
Since sampling can be modelled as a form of time-varying, resetting delay, we

will be using classical Razumikhin-type results available in time-delay systems
literature (see [52], Theorem 4.3) to prove ultimate boundedness of solutions. As
mentioned in the beginning of the proof, the main idea of this proof is to show
that for all t ∈ [sk, sk+1), k ∈ N, if φ(W (x(t))) ≥ W (x(sk

⋆
)) and if ∥x∥ > Nρ,

then under the conditions of the theorem, Ẇ < 0 will be guaranteed. Here,
φ ∶ R+ → R+ is a continuous non-decreasing function, with φ(s) > s for s > 0.
Choosing the function φ(s) = κs, κ > 1, the proof aims to show that for all
t ∈ [sk, sk+1), k ∈ N, if

N

∑
i=1

xTi (s
k⋆

)Pxi(s
k⋆

) ≤ κ
N

∑
i=1

xTi (t)Pxi(t), κ > 1, (4.26)

then, under the conditions of the theorem, when ∥x(t)∥ > Nρ (implying ∥xi∥ >
ρ for at least one of the sub-systems i ∈ {1,2, . . . ,N}), Ẇ < 0 needs to be
guaranteed. Now, condition (4.26) implies

∥x(sk
⋆
)∥

2
≤ κ

max(eig(P ))

min(eig(P ))
∥x(t)∥2,∀t ∈ [sk, sk+1

), k ∈ N, (4.27)

where x = [xT1 xT2 . . . xTN ]
T

and sk
⋆

is given by (4.23). Under this condition,
inequality (4.25) can be rewritten as

yTi (t)ui(t) ≤ σγ∥x(t)∥
2
N

∑
j=1

aji, (4.28)

where γ is given by (4.15). Now, from (4.17), using Assumption 4.7, for all
t ∈ [sk, sk+1), k ∈ N, we have

Ẇ (x(t)) ≤
N

∑
i=1

[yTi (t)ui(t) −H(xi(t))] . (4.29)

Now, consider the set I⋆ ⊂ {1,2, . . . ,N} defined by

I⋆ ∶= {i ∈ {1,2, . . . ,N} ∶ ∥xi∥ > ρ}, (4.30)

and the set Ĩ ⊂ {1,2, . . . ,N} defined by

Ĩ ∶= {i ∈ {1,2, . . . ,N} ∶ ∥xi∥ ≤ ρ}. (4.31)
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Clearly I⋆ ∪ Ĩ = I = {1,2, . . . ,N}. Then, using (4.28), the term ∑
N
i=1 y

T
i (t)ui(t)

in (4.29) can be expressed as

N

∑
i=1

yTi (t)ui(t) = ∑
i∈I⋆

yTi (t)ui(t) +∑
i∈Ĩ

yTi (t)ui(t)

≤ ∑
i∈I⋆

σγ∥x(t)∥2
∑
j∈I

aji +∑
i∈Ĩ

σγ∥x(t)∥2
∑
j∈I

aji

= σγ∥x(t)∥2
∑
i,j∈I

aji,

(4.32)

since ∑i∈I⋆,j∈I aji + ∑i∈Ĩ,j∈I aji = ∑i,j∈I aji. Therefore, by using the fact that

∥x(t)∥2 = ∑i∈I⋆ ∥xi(t)∥
2 +∑i∈Ĩ ∥xi(t)∥

2, we have

N

∑
i=1

yTi (t)ui(t) ≤ σγ∥x(t)∥
2
∑
i,j∈I

aji

= ∑
i∈I⋆

σγ∥xi(t)∥
2
∑
j,l∈I

ajl +∑
i∈Ĩ

σγ∥xi(t)∥
2
∑
j,l∈I

ajl.
(4.33)

Then, using (4.33) and the fact that ∑
N
i=1H(xi(t)) = ∑i∈I⋆H(xi(t)) +

∑i∈ĨH(xi(t)), inequality (4.29) can be written as

Ẇ (x(t)) ≤ ∑
i∈I⋆

⎛

⎝
σγ∥xi(t)∥

2
∑
j,l∈I

ajl −H(xi(t))
⎞

⎠

+∑
i∈Ĩ

⎛

⎝
σγ∥xi(t)∥

2
∑
j,l∈I

ajl −H(xi(t))
⎞

⎠
.

(4.34)

Under the conditions of the theorem, i.e., for ∥xi(t)∥ > ρ for all i ∈ I⋆, we have
that H(xi(t)), satisfies

H(xi(t)) − σγN∥xi(t)∥
2

N

∑
i,j=1

aji −Nη > 0, (4.35)

with γ, η given by (4.15), (4.13), respectively. Therefore, using (4.35), inequality
(4.34) implies

Ẇ (x(t)) ≤ ∑
i∈I⋆

⎛

⎝
σγ∥xi(t)∥

2
∑
j,l∈I

ajl − σγ∥xi(t)∥
2
∑
j,l∈I

ajl

−σγ(N − 1)∥xi(t)∥
2
∑
j,l∈I

ajl −Nη
⎞

⎠
+∑
i∈Ĩ

⎛

⎝
σγ∥xi(t)∥

2
∑
j,l∈I

ajl −H(xi(t))
⎞

⎠

≤ ∑
i∈I⋆

⎛

⎝
−σγ(N − 1)∥xi(t)∥

2
∑
j,l∈I

ajl −Nη
⎞

⎠
+∑
i∈Ĩ

⎛

⎝
σγ∥xi(t)∥

2
∑
j,l∈I

ajl −H(xi(t))
⎞

⎠
,

(4.36)
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with γ, η given by (4.15), (4.13), respectively. It is clear that when at least
one subsystem satisfies ∥xi∥ > ρ, i.e., dim(I⋆) ≥ 1, we have that dim(Ĩ) ≤

N −1. Additionally, from the definition of the sets I⋆ and Ĩ in (4.30) and (4.31),
respectively, we know ∥xi∥ > ∥xj∥, for any i ∈ I⋆ and j ∈ Ĩ. Consequently,

∑i∈I⋆(N − 1)∥xi(t)∥
2 > ∑i∈Ĩ ∥xi(t)∥

2, i.e.,

∑
i∈I⋆

RRRRRRRRRRR

−σγ(N − 1)∥xi(t)∥
2
∑
j,l∈I

ajl

RRRRRRRRRRR

>∑
i∈Ĩ

σγ∥xi(t)∥
2
∑
j,l∈I

ajl, (4.37)

implying

∑
i∈I⋆

−σγ(N − 1)∥xi(t)∥
2
∑
j,l∈I

ajl +∑
i∈Ĩ

σγ∥xi(t)∥
2
∑
j,l∈I

ajl < 0, (4.38)

with γ, η given by (4.15), (4.13), respectively. Therefore, inequality (4.36) clearly
implies

Ẇ (x(t)) < −dim(I⋆)Nη −∑
i∈Ĩ

H(xi(t)). (4.39)

In the above inequality, if ∑i∈ĨH(xi(t)) ≥ 0, then Ẇ < 0 since dim(I⋆)Nη ≥ 0
(because dim(I⋆) ≥ 1, N > 0 and η ≥ 0). On the other hand, consider

∑i∈ĨH(xi(t)) < 0. Then, from the definition of η in (4.13), and the fact

dim(Ĩ) ≤ N − 1 (when dim(I⋆) ≥ 1), it is clear that ∣∑i∈Ĩ H(xi(t))∣ ≤ (N − 1)η.
Therefore,

dim(I⋆)Nη ≥
RRRRRRRRRRR

∑
i∈Ĩ

H(xi(t))
RRRRRRRRRRR

, (4.40)

and consequently, inequality (4.39) implies

Ẇ (x(t)) < 0. (4.41)

Since sampling can be viewed as a time-varying and resetting delay, the condition
φ(W (x(t))) ≥ W (x(sk

⋆
)) for the continuous non-decreasing function φ(s) =

κs, κ > 1, can be written as φ(W (x(t))) ≥ W (x(t + θ)), θ ∈ [−maxi,j h̄ij ,0].

Therefore, we have shown that Ẇ (x) < 0 when φ(W (x(t))) ≥ W (x(t + θ)),
θ ∈ [−maxi,j h̄ij ,0], and ∥x∥ > Nρ. Then, by applying the Razumikhin-type
theorem for uniform ultimate boundedness of time-delay systems, given in [52],
Theorem 4.3, we can directly conclude that the solutions of the system (4.1),
(4.4) are uniformly ultimately bounded.

Now that conditions for boundedness of solutions has been established, we
proceed to study the synchronization properties of system (4.1), (4.4). Since
the individual systems under consideration are of relative degree one, we know
that there exists a well-defined coordinate transformation zi = Φ(xi), zi ∈ Rn−m,
i = {1,2, . . . ,N}, such that the ith sub-system dynamics are represented by

żi(t) = q(zi(t), yi(t)),

ẏi(t) = a(zi(t), yi(t)) + bui(t), i = {1,2, . . . ,N},
(4.42)
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where zi ∈ Rn−m, ui, yi ∈ Rm, q∶Rn−m × Rm → Rn−m, and a∶Rn−m × Rm → Rm
[104]. In this chapter, we will analyse the exponential synchronization of system
(4.42), (4.4), which implies the exponential synchronization of system (4.1),
(4.4). The remainder of this chapter deals with system (4.42), (4.4).

4.3.2 Continuous-time Synchronization

As mentioned in the introduction, we will consider the effects of sampling as
perturbations to the nominal continuous-time synchronization dynamics, i.e.,
synchronization dynamics in the absence of sampling. In this section, we will
study the synchronization properties of system (4.42) with the coupling law
ui = u

⋆
i , where u⋆i is the ideal (continuous-time) coupling law given by

u⋆i (t) = σ ∑
j∈E(j,i)

aji(yj(t) − yi(t)),∀t ≥ 0. (4.43)

In order to achieve incremental stabilization via output feedback, we require
incremental stability conditions on the internal dynamics żi in (4.42). To this
end, we will first introduce a definition of the convergence property, which will
also be exploited later to ensure certain synchronization properties.

Definition 4.9. [28] The dynamics ẋ = g(x,u(t)), with u ∶ R ↦ R being a
piecewise continuous function, are said to be convergent if

� there exists a solution x̄(t) which is bounded for all t ∈ R,

� x̄(t) is a globally asymptotically stable solution.

The second point implies that for any initial condition x0, the solution x(t)
converges to the bounded solution x̄(t). The solution x̄(t) is called the steady-
state solution. If x̄(t) is in addition exponentially stable, then the system is
called exponentially convergent. Once synchronization is achieved, the diffusive
coupling law (4.4) (or the continuous-time coupling law (4.43)) vanishes. Conse-
quently, having certain incremental stability properties on the internal dynamics
żi in (4.42) will guarantee convergence towards an asymptotically stable solution.

Now, we will recall the following sufficient condition for exponential conver-
gence.

Theorem 4.10. (Demidovich Condition [98]) Consider the system dynamics
ẋ = g(x,u), where g is a sufficiently smooth function, and u is a piecewise
continuous function that takes values in a compact set. If there exists a positive
definite matrix P = PT > 0 such that

P
∂g

∂x
(x,u) +

∂gT

∂x
(x,u)P ≤ −δI, (4.44)

where δ > 0, and I is of appropriate dimension, then the system ẋ = g(x,u) is
exponentially convergent.
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Next, we consider the following assumption guaranteeing exponential con-
vergence of internal dynamics of (4.42).

Assumption 4.11. The internal state dynamics of (4.42) given by żi(t) =

q(zi(t), yi(t)), i = {1,2, . . . ,N}, satisfies condition (4.44), i.e., there exists
Pz = P

T
z > 0 and δ > 0, such that

Pz
∂q

∂zi
(zi, yi) +

∂qT

∂zi
(zi, yi)Pz ≤ −δIn−m. (4.45)

Now, we introduce a preliminary result on the interconnected system (4.42),
in the absence of sampling, i.e., with ui(t) = u

⋆
i (t) given by the coupling law in

(4.43). This result guaranteeing exponential synchronization of the continuous-
time system (4.42) with coupling law (4.43), is an extension of the result provided
in [104] for a two-agent system, to a generic multi-agent system.

Theorem 4.12. [104], [123] Consider system (4.42) with ui(t) = u⋆i (t) given
by (4.43), and let Assumption 4.2 and Assumption 4.11 hold. Then, there exists
a constant σ̄ such that for all σ > σ̄, the (directionally) coupled system given by
(4.42) with ui(t) = u

⋆
i (t), achieves exponential synchronization.

Under the conditions of Theorem 4.12 (continuous-time exponential synchro-
nization), there exists a matrix Py such that a storage function

W (e(t)) = [
ez(t)
ey(t)

]

T

[
Pz 0
0 Py

] [
ez(t)
ey(t)

] , (4.46)

where Pz = I(N−1)×(N−1)⊗Pz exists satisfying the inequality in Assumption 4.11
[123], and the synchronization errors ey(t) and ez(t) are defined by

ez(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z1(t) − z2(t)
z1(t) − z3(t)

⋮

z1(t) − zN(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ey(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1(t) − y2(t)
y1(t) − y3(t)

⋮

y1(t) − yN(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.47)

This storage function can be used to characterize the exponential stability prop-
erties of the synchronization manifold defined by

M ∶= {col(z1, z2 . . . zN , y1, y2 . . . yN) ∈ RNn∶ z1 = z2 = ⋅ ⋅ ⋅ = zN , y1 = y2 = ⋅ ⋅ ⋅ = yN} .
(4.48)

Therefore, using such a storage function, it can be shown that Ẇ + αW ≤ 0,
where α > 0 [123]. While the matrix Pz results from Assumption 4.11, it has
previously been shown that with a diagonal matrix Py > 0, a candidate storage
function of the form given in (4.46), can be used to characterize the exponential
stability properties of the synchronization manifold (see Theorem 3, Lemma 7,
and Proposition 2 in [123]).
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In the following lemma, we establish positive invariance of the synchroniza-
tion manifold for system (4.42), (4.4), i.e., for the system with sampled-data
coupling.

Lemma 4.13. The synchronization manifold defined by (4.48) is posi-
tively invariant under the directionally coupled system (4.42), with ui(t), i ∈
{1,2, . . . ,N}, given by (4.4).

Proof. From (4.4), we know that on the synchronization manifold, ui(t) = 0 for
all i ∈ {1,2, . . . ,N}, t ∈ R, since y1(t) = y2(t) = ⋅ ⋅ ⋅ = yN(t). As a consequence of
idential system (input-output) dynamics, from (4.42), since on the synchroniza-
tion manifold M, y1(t) = y2(t) = ⋅ ⋅ ⋅ = yN(t) and z1(t) = z2(t) = ⋅ ⋅ ⋅ = zN(t), we
have that ẏ1(t) = ẏ2(t) = ⋅ ⋅ ⋅ = ẏN(t) and ż1(t) = ż2(t) = ⋅ ⋅ ⋅ = żN(t). Therefore,
we have that M is positively invariant.

Given the positive invariance of the synchronization manifold, we proceed
to analyse the exponential synchronization of system (4.42), (4.4), which relates
to the exponential stability properties of this manifold, as follows. In the next
section, the effects of sampling on the synchronization error dynamics of system

(4.1), (4.4), given by [ėTy (t) ėTz (t)]
T

with ez(t), ey(t) defined by (4.47), are
modelled as perturbations to the nominal continuous-time networked system
given by (4.42), with ui(t) = u⋆i (t) in (4.43). The properties of these pertur-
bations are then studied, which aid in obtaining conditions that help analyse
the synchronization robustness of the nominal continuous-time dynamics, with
respect to the sampling-induced perturbations.

4.4 Synchronization Error Dynamics

In this section, we reformulate the synchronization error dynamics of system
(4.42), (4.4) as the feedback interconnection between a system operator that
captures the continuous-time synchronization error dynamics (system (4.42),
(4.43)), and an operator that captures the sampling-induced effects.

4.4.1 Continuous-time Synchronization Error Dynamics

For i ∈ {1,2, . . . ,N}, consider the notation for synchronization error

ez1i(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0,∀t ∈ [−maxi,j(h̄ij),0)

z1(t) − zi(t),∀t ≥ 0,

ey1i(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0,∀t ∈ [−maxi,j(h̄ij),0)

y1(t) − yi(t),∀t ≥ 0.

(4.49)
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Then, the synchronization errors are defined as

ez(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ez12(t)
ez13(t)
⋮

ez1N(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ey(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ey12(t)
ey13(t)
⋮

ey1N(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.50)

with ez1i(t), e
y
1i(t) given by (4.49) for all t ≥ 0. Consequently, for all t ≥ 0, the

synchronization error dynamics for the internal dynamics is given by

ėz(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ėz12(t)
ėz13(t)
⋮

ėz1N(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.51)

where, for i ∈ {2,3, . . . ,N},

ėz1i(t) = ż1(t) − żi(t) = q(z1(t), y1(t)) − q(zi(t), yi(t)),

= fz (e
z
1i(t), e

y
1i(t), z1(t), y1(t)) ,

(4.52)

with

fz (e
z
1i(t), e

y
1i(t), z1(t), y1(t)) = q(z1(t), y1(t)) − q (z1(t) − e

z
1i(t), y1(t) − e

y
1i(t)) .
(4.53)

Similarly, the output synchronization error dynamics is given by

ėy(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ėy12(t)
ėy13(t)
⋮

ėy1N(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.54)

where, for i ∈ {2,3, . . . ,N},

ėy1i(t) = ẏ1(t) − ẏi(t) = a(z1(t), y1(t)) − a(zi(t), yi(t)) + b(u1(t) − ui(t)),

= fy (e
z
1i(t), e

y
1i(t), z1(t), y1(t)) + b(u1(t) − ui(t)),

(4.55)

with the coupling laws for u1(t), ui(t), i ∈ {2,3, . . . ,N}, given by (4.4), and

fy (e
z
1i(t), e

y
1i(t), z1(t), y1(t)) = a(z1(t), y1(t)) − a (z1(t) − e

z
1i(t), y1(t) − e

y
1i(t)) .
(4.56)

We shall now formulate the synchronization error dynamics in the absence of
any sampling effects, i.e., with the ideal continuous-time coupling law (4.43).
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Lemma 4.14. Consider the continuous-time system (4.42), (4.43). Then, the
synchronization error dynamics (4.51), (4.52), (4.54), (4.55) with continuous-
time coupling laws (4.43), is given by

ėz1i = fz (e
z
1i(t), e

y
1i(t), z1(t), y1(t)) ,

ėy1i(t) = fy (e
z
1i(t), e

y
1i(t), z1(t), y1(t)) − bσ (a1ie

y
1i(t)

+
N

∑
j=2

(aj1e
y
1j(t) + aji(e

y
1i(t) − e

y
1j(t)))

⎞

⎠
,∀t ≥ 0,

(4.57)

for i ∈ {2,3, . . . ,N}, with functions fz and fy given by (4.53) and (4.56), respec-
tively.

Proof. Let us recall the continuous-time coupling law for sub-system i, given in
(4.43). We have,

u⋆i (t) = σ
N

∑
j=1

aji(yj(t) − yi(t)), j ≠ i,

= σ
N

∑
j=1

aji(yj(t) − yi(t) + y1(t) − y1(t))

= σ
N

∑
j=1

aji((y1(t) − yi(t)) − (y1(t) − yj(t)))

= σ
N

∑
j=1

aji(e
y
1i(t) − e

y
1j(t)) = σ(a1ie

y
1i(t) +

N

∑
j=2

aji(e
y
1i(t) − e

y
1j(t))).

(4.58)

Now, from the definition of the synchronization error dynamics in (4.51), (4.54),
for the continuous-time system (4.42), (4.43), we have, for all t ≥ 0 and i ∈
{2,3, . . . ,N},

ėz1i(t) = ż1(t) − żi(t) = q(z1(t), y1(t)) − q(zi(t), yi(t)),

= fz (e
z
1i(t), e

y
1i(t), z1(t), y1(t)) ,

(4.59)

where fz is given by (4.53). Similarly, for all t ≥ 0,

ėy1i(t) = ẏ1(t) − ẏi(t) = a(z1(t), y1(t)) − a(zi(t), yi(t)) + b(u
⋆
1(t) − u

⋆
i (t)),

= fy (e
z
1i(t), e

y
1i(t), z1(t), y1(t)) + b(u

⋆
1(t) − u

⋆
i (t)),

(4.60)

where fy is given by (4.56). From (4.58) and notation (4.49), for sub-system
i = 1, we have

u⋆1(t) = −σ
N

∑
j=2

aj1e
y
1j(t),∀t ≥ 0. (4.61)
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Hence, for all t ≥ 0, we can rewrite (4.60) as

ėy1i(t) = fy (e
z
1i(t), e

y
1i(t), z1(t), y1(t)) + bσ(−

N

∑
j=2

aj1e
y
1j(t) − a1ie

y
1i(t)

−
N

∑
j=2

aji(e
y
1i(t) − e

y
1j(t))),

= fy (e
z
1i(t), e

y
1i(t), z1(t), y1(t)) − bσ(a1ie

y
1i(t)

+
N

∑
j=2

(aj1e
y
1j(t) + aji(e

y
1i(t) − e

y
1j(t)))),

(4.62)

where i ∈ {2,3, . . . ,N}. Therefore, the synchronization error dynamics for the
continuous-time system (4.42), (4.43) is given by (4.59), (4.62), and hence by
(4.57).

4.4.2 Modelling Sampling Effects

In classical methods studying sampled-data systems, the sampling induced error
on any signal η subjected to a sampling sequence {sk}k∈N is characterized by

w(t) = η(sk) − η(t),∀t ∈ [sk, sk+1). (4.63)

In a similar manner as proposed in Chapter 2 and Chapter 3, the sampling-
induced error w(t) is expressed using an integral operator ∆ acting on the
derivative of the signal η, i.e.,

w(t) = (∆η̇)(t) ∶= −∫
t

sk
η̇(θ)dθ = η(sk) − η(t),∀t ∈ [sk, sk+1

), k ∈ N. (4.64)

Here, we use this approach to characterize the sampling-induced error in the links
defined by aij , with i, j ∈ {1,2, . . . ,N}. Using definition (4.64), the sampling-
induced error in the output of the ith sub-system, when transmitted to the jth

sub-system along the edge E(i,j), can be characterized using an operator ∆{sij}

defined by

(∆{sij}ẏi)(t) ∶= −

t

∫

s
kij
ij

ẏi(θ)dθ = yi(s
kij
ij ) − yi(t),∀t ∈ [s

kij
ij , s

kij+1
ij ), k ∈ N. (4.65)

In the following lemma, we demonstrate how the sampled-data coupling law
(4.4) can be expressed in terms of the ideal continuous-time coupling law (4.43)
by capturing the effects of sampling using the operator ∆{sij}.
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Lemma 4.15. Consider the sampled-data coupling law ui given by (4.4), the
ideal continuous-time coupling law u⋆i given by (4.43), and the operator ∆{sji}

given by (4.65). Then,

ui(t) = u
⋆
i (t) + σ

N

∑
j=1

aji(∆{sji}(ė
y
1i − ė

y
1j))(t),∀t ≥ 0, (4.66)

for all i, j ∈ {1,2 . . .N}, where ėy1i, ė
y
1j, are given by (4.55).

Proof. Let us recall the ith sampled-data coupling law in (4.4), i.e.,

ui(t) = σ ∑
j∈E(j,i)

aji(ŷji(t) − ỹji(t)), j ≠ i, (4.67)

where
ŷji(t) = yj(s

kji
ji ),∀t ∈ [s

kji
ji , s

kji+1
ji ),

ỹji(t) = yi(s
kji
ji ),∀t ∈ [s

kji
ji , s

kji+1
ji ),

(4.68)

for all i, j ∈ V, j ≠ i. We can alternately express ui(t) as

ui(t) = u1i(t) + u2i(t) + ⋅ ⋅ ⋅ + uNi(t), (4.69)

where uji, j ≠ i defines the component of the coupling law ui that depends on
the information transmitted from the jth sub-system, and is given by

uji(t) = σaji(ŷji(t) − ỹji(t)),∀t ≥ 0, (4.70)

where ŷji and ỹji are given by (4.68). Therefore, for any t ∈ [s
kji
ji , s

kji+1
ji ), kji ∈ N,

j, i ∈ {1,2, . . . ,N}, j ≠ i, we have

uji(t) = σaji (yj(s
kji
ji ) − yi(s

kji
ji ))

= σaji (yj(s
kji
ji ) + yj(t) − yj(t) − yi(s

kji
ji ) + yi(t) − yi(t))

= σaji ((yj(t) − yi(t)) + (yj(s
kji
ji ) − yj(t)) − (yi(s

kji
ji ) − yi(t))) .

(4.71)

Using the definition of the operator capturing sampling-induced error in (4.65),
since ∆{sji} is an integral operator, for all i ∈ {1,2 . . .N}, j ∈ {2,3 . . .N}, j ≠ i,
and t ≥ 0, we have that

uji(t) = σaji ((yj(t) − yi(t)) + (∆{sji}ẏj)(t) − (∆{sji}ẏi)(t))

= σaji ((yj(t) − yi(t)) + (∆{sji}(ẏj − ẏi))(t)) .
(4.72)

In a similar manner as stated in (4.69) and (4.70), we can see from the defi-
nition of the ideal continuous-time coupling law u⋆i (t) in (4.43) that the term
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σaji (yj(t) − yi(t)) is the component of u⋆i (t), which depends on the jth sub-
system. Let us denote this by u⋆ji(t). Therefore, we have

uji(t) = u
⋆
ji(t) + σaji(∆{sji}(ẏj − ẏi))(t). (4.73)

In order to express this in terms of the synchronization error vector given in
(4.50), let us consider the term

yj(t) − yi(t) = yj(t) − yi(t) + y1(t) − y1(t) = e
y
1i(t) − e

y
1j(t). (4.74)

Using (4.74) in (4.73), we obtain

uji(t) = u
⋆
ji(t) + σaji(∆{sji}(ė

y
1i − ė

y
1j))(t). (4.75)

Consequently, from (4.69), we have

ui(t) = u
⋆
i (t) + σ

N

∑
j=1

aji(∆{sji}(ė
y
1i − ė

y
1j))(t),∀t ≥ 0. (4.76)

Using Lemma 4.15, we will demonstrate how for the system (4.42) with
sampled-data coupling (4.4), the synchronization error dynamics defined using
(4.51)-(4.56) can be reformulated as a feedback interconnection between an op-
erator that captures the continuous-time synchronization error dynamics given
in Lemma 4.14, and an operator that characterizes the effects of sampling, as
shown in (4.66).

Lemma 4.16. Consider the operator ∆ defined by

w̃(t) = (∆ėy)(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(∆12ėy)(t)
(∆13ėy)(t)

⋮

(∆1N ėy)(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w̃12(t)
w̃13(t)

⋮

w̃1N(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.77)

where
w̃1i(t) = (∆1iėy)(t), i ∈ {2,3, . . . ,N}

∶= bσa1iw1i(t) +
N

∑
j=2

bσ (aj1wj1(t) + ajiwji(t)) ,
(4.78)

and

wji(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(∆{s1i}ė
y
1i)(t), j = 1

(∆{sj1}ė
y
1j)(t), i = 1

(∆{sji}(ė
y
1i − ė

y
1j))(t), i, j ∈ {2,3 . . .N}

(4.79)

with ėy, ė
y
1i given by (4.54), (4.55), and the operators ∆{s1i}, ∆{sj1} and ∆{sji}

given by (4.65). Then, for all t ≥ 0, the synchronization error dynamics of
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G

∆

w̃

ėy

Figure 4.2: The feedback interconnection of G and ∆, representing the synchro-
nization error dynamics of system (4.42), (4.4).

system (4.42), (4.4) can be remodelled as the feedback interconnection between a
system operator G and ∆, with G given by (4.51)-(4.54), and

ėy1i(t) = ẏ1(t) − ẏi(t)

= fy (e
z
1i(t), e

y
1i(t), z1(t), y1(t)) − bσ(a1ie

y
1i(t) +

N

∑
j=2

(aj1e
y
1j(t)

+aji(e
y
1i(t) − e

y
1j(t))) ) − w̃1i(t),

(4.80)

for i ∈ {2,3, . . . ,N}, with fy given by (4.56).

Proof. Considering the ith system dynamics in (4.42), (4.4), i ∈ {1,2, . . . ,N}, we
have

żi(t) = q(zi(t), yi(t))

ẏi(t) = a(zi(t), yi(t)) + bui(t),
(4.81)

where the sampled-data coupling law ui(t) can be expressed as given in Lemma
4.15.

Using Lemma 4.15, we have that

ui(t) = u
⋆
i (t) + σ

N

∑
j=1

aji(∆{sji}(ė
y
1i − ė

y
1j))(t),∀t ≥ 0, (4.82)

where

u⋆i (t) = σ
N

∑
j=1

aji(yj(t) − yi(t)),∀t ≥ 0. (4.83)

In the proof of Lemma 4.15, in (4.74), we have already shown that yj(t)−yi(t) =
ey1i(t) − e

y
1j(t). Therefore, for all t ≥ 0,

ui(t) = σ
N

∑
j=1

aji (e
y
1i(t) − e

y
1j(t) + (∆{sji}(ė

y
1i − ė

y
1j))(t)) . (4.84)
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By definition of the synchronization error in (4.49), we know ey11 = 0. Therefore,

ui(t) = σ(a1i(e
y
1i(t) + (∆{s1i}ė

y
1i)(t))

+
N

∑
j=2

aji (e
y
1i(t) − e

y
1j(t) + (∆{sji}(ė

y
1i − ė

y
1j))(t)) ),∀t ≥ 0.

(4.85)

Using (4.85) and (4.81), the dynamics of the ith sub-system, i ∈ {1,2 . . .N}, for
all t ≥ 0, is given by

żi(t) = q(zi(t), yi(t)),

ẏi(t) = a(zi(t), yi(t)) + bσ(a1i(e
y
1i(t) + (∆{s1i}ė

y
1i)(t))

+
N

∑
j=2

aji(e
y
1i(t) − e

y
1j(t) + (∆{sji}(ė

y
1i − ė

y
1j))(t))).

(4.86)

Therefore, the system dynamics of sub-system i = 1 can be rewritten as

ż1(t) = q(z1(t), y1(t))

ẏ1(t) = a(z1(t), y1(t)) − bσ
N

∑
j=2

aj1(e
y
1j(t) + (∆{sj1}ė

y
1j)(t)).

(4.87)

Now, considering the synchronization error vector for z−dynamics given in
(4.50), we have

ėz(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ėz12(t)
ėz13(t)
⋮

ėz1N(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ż1(t) − ż2(t)
ż1(t) − ż3(t)

⋮

ż1(t) − żN(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.88)

where, using (4.87) and (4.86),

ż1(t) − żi(t) = fz (e
z
1i(t), e

y
1i(t), z1(t), y1(t)) , i ∈ {2,3, . . . ,N}, (4.89)

with fz given by (4.53). Similarly, considering the synchronization error vector
for y−dynamics given in (4.50), we have

ėy(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ėy12(t)
ėy13(t)
⋮

ėy1N(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ẏ1(t) − ẏ2(t)
ẏ1(t) − ẏ3(t)

⋮

ẏ1(t) − ẏN(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.90)
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where, using (4.87) and (4.86), for i ∈ {2,3, . . . ,N}, we have

ẏ1(t) − ẏi(t) = fy (e
z
1i(t), e

y
1i(t), z1(t), y1(t))

− bσ(
N

∑
j=2

aj1e
y
1j(t) + a1ie

y
1i(t) +

N

∑
j=2

aji(e
y
1i(t) − e

y
1j(t)))

− bσ(
N

∑
j=2

aj1(∆{sj1}ė
y
1j)(t) + a1i(∆{s1i}ė

y
1i)(t)

+
N

∑
j=2

aji(∆{sji}(ė
y
1i − ė

y
1j))(t)), j ≠ i,

(4.91)

with fy given by (4.56). The individual terms ėy1i(t), i ∈ {2,3, . . . ,N}, in the
synchronization error dynamics (4.90), are therefore given by

ėy1i(t) =

continuous-time synchronization error dynamics

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

fy (e
z
1i(t), e

y
1i(t), z1(t), y1(t)) − bσ (a1ie

y
1i(t)

+
N

∑
j=2

(aj1e
y
1j(t) + aji(e

y
1i(t) − e

y
1j(t)))

⎞

⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
continuous-time synchronization error dynamics

−w̃1i(t),
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sampling-induced perturbation

(4.92)

where w̃1i(t) is given by (4.78). In the reformulated synchronization error dy-
namics (4.92), (4.78) the terms representing the synchronization error dynamics
in continuous-time, i.e., in the absence of sampling, with the coupling law (4.43),
as given in Lemma 4.14, have been mentioned specifically. Similarly, the term
indicating the sampling-induced perturbations acting on the continuous-time
synchronization error dynamics have been shown.

Therefore, it is evident that for all t ≥ 0, the synchronization error dynamics
of system (4.42), (4.4), can be viewed as a feedback-interconnection between a
system operator G and an operator ∆ as shown in Figure 4.2, the dynamics of
which are given by (4.88), (4.89), (4.90), (4.92), and

w̃(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w̃12(t)
w̃13(t)

⋮

w̃1N(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= (∆ėy)(t), (4.93)

with ∆ as defined in (4.77) and (4.78).

Now that the synchronization error dynamics of system (4.42), (4.4) has been
reformulated as a feedback-interconnection, we will exploit the properties of the
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operator ∆, as shown in the next section, to arrive at functions that will be used
to provide our main result guaranteeing exponential synchronization.

4.5 Synchronization Criterion

In this section, we will provide conditions that guarantee exponential synchro-
nization of system (4.42), (4.4). Hereto, we will exploit the system reformulation
introduced in Section 4.4 and dissipativity theory.

First, we study the properties related to the L2 norm of the operator ∆ as
defined in (4.77) and (4.78) in the following lemma.

Lemma 4.17. Consider the operator ∆ defined in (4.77), (4.78). Then, for any
R1i,Rj1,Rji ∈ Rm×m, with R1i = R

T
1i > 0, Rj1 = RTj1 > 0, Rji = R

T
ji > 0, and

i, j ∈ {2,3, . . . ,N}, j ≠ i,

∫

t

0
S(θ, ėy(θ), (∆ėy)(θ)) ≤ 0, (4.94)

where ėy(t) is given by (4.54), (4.80) and the function S ∶ R+ × R(N−1)m ×

R(N−1)m → R is given by

S(t, ėy(t), (∆ėy)(t)) = e
αt

(
N

∑
i=2

[wT1i(t)R1iw1i(t) − h̄
2
1ie

αh̄1i(ėy1i)
T
(t)R1iė

y
1i(t)]

+ (N − 1)
N

∑
j=2

[wTj1(t)Rj1wj1(t) − h̄
2
j1e

αh̄j1(ėy1j)
T
(t)Rj1ė

y
1j(t)]

+
N

∑
i=2

N

∑
j=2

[wTji(t)Rjiwji(t) − h̄
2
jie

αh̄ji(ėy1i − ė
y
1j)

T
(t)Rji(ė

y
1i − ė

y
1j)(t)]),

(4.95)
with α > 0, and w1i(t), wj1(t) and wji(t) given by (4.79).

Proof. We will evaluate the different terms in S in (4.95) in order to evidence
the validity of the inequality in (4.94). Let us first consider the term

w1i(t) = (∆{s1i}ė
y
1i)(t). (4.96)

Using the definition of the operator ∆{s1i} as given in (4.65), we have

w1i(t) = −∫
t

sk1i

ėy1i(s)ds,∀t ∈ [sk1i, s
k+1
1i ), k ∈ N,

= ey1i(s
k
1i) − e

y
1i(t).

(4.97)

Using Jensen’s inequality [48], we obtain

wT1i(t)R1iw1i(t) ≤ (t − sk1i)∫
t

sk1i

(ėy1i)
T
(ζ)R1iė

y
1i(ζ)dζ

≤ h̄1i ∫

t

sk1i

(ėy1i)
T
(ζ)R1iė

y
1i(ζ)dζ.

(4.98)
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Using the change of variable s = ζ − t, we obtain

wT1i(t)R1iw1i(t) ≤ h̄1i ∫

0

sk1i−t
(ėy1i)

T
(t + s)R1iė

y
1i(t + s)ds

≤ h̄1i ∫

0

−h̄1i

(ėy1i)
T
(t + s)R1iė

y
1i(t + s)ds.

(4.99)

Therefore,

∫

t

0
eαθwT1i(θ)R1iw1i(θ)dθ ≤ h̄1i ∫

t

0
eαθ (∫

0

−h̄1i

(ėy1i)
T
(θ + s)R1iė

y
1i(θ + s)ds)dθ.

(4.100)
Substituting u = θ + s, we have that

∫

t

0
eαθwT1i(θ)R1iw1i(θ)dθ ≤ h̄1i ∫

0

−h̄1i

(∫

t+s

s
eα(u−s)(ėy1i)

T
(u)R1iė

y
1i(u)du)ds.

(4.101)
Since the inner integral in the right-hand side of the inequality in (4.101) is
always non-negative because R1i is positive definite, we can upper bound the
left-hand side in (4.101) using the limits of s and obtain

∫

t

0
eαθwT1i(θ)R1iw1i(θ)dθ ≤ h̄1i ∫

0

−h̄1i

(∫

t

0
eα(u+h̄1i)(ėy1i)

T
(u)R1iė

y
1i(u)du)ds

= h̄1ie
αh̄1i
∫

0

−h̄1i

(∫

t

0
eαu(ėy1i)

T
(u)R1iė

y
1i(u)du)ds

= h̄2
1ie

αh̄1i
∫

t

0
eαθ(ėy1i)

T
(θ)R1iė

y
1i(θ)dθ.

(4.102)
Therefore, we have

∫

t

0
eαθ(wT1i(θ)R1iw1i(θ) − h̄

2
1ie

αh̄1i(ėy1i)
T
(θ)R1iė

y
1i(θ))dθ ≤ 0. (4.103)

From (4.65), it is evident that the operators ∆{s1i}, ∆{sj1} and ∆{sji} have the
same structure. Therefore, for the expressions

wj1(t) = (∆{sj1}ė
y
1j)(t), (4.104)

and
wji(t) = (∆{sji}(ė

y
1i − ė

y
1j))(t), (4.105)

we can classify the properties of the operators ∆{sj1} and ∆{sji} by

∫

t

0
eαθ(wTj1(θ)Rj1wj1(θ) − h̄

2
j1e

αh̄j1(ėy1j)
T
(θ)Rj1ė

y
1j(θ))dθ ≤ 0, (4.106)

and

∫

t

0
eαθ(wTji(θ)Rjiwji(θ) − h̄

2
jie

αh̄ji(ėy1i(θ)

− ėy1j(θ))
TRji(ė

y
1i(θ) − ė

y
1j(θ)))dθ ≤ 0.

(4.107)



126
Chapter 4. Exponential Synchronization of Networked Systems Under

Asynchronous Sampled-Data Coupling

The expressions (4.103), (4.106), (4.107), classify the properties of operators
∆{s1i}, ∆{sj1} and ∆{sji}, respectively. It can be understood directly from (4.78)
that the operator ∆{s1i} influences the synchronization error dynamics for all
i ∈ {2,3, . . . ,N}. Therefore, from (4.103), we can state that

∫

t

0
eαθ

N

∑
i=2

(wT1i(θ)R1iw1i(θ) − h̄
2
1ie

αh̄1i(ėy1i)
T
(θ)R1iė

y
1i(θ))dθ ≤ 0. (4.108)

Similarly, from (4.78), we know that the operator ∆{sj1} characterizes the total

influence of every jth system, j ∈ {2,3, . . . ,N}, on the dynamics of the sub-
system i = 1. And since every term in the synchronization error vector uses the
first system as a reference, we can state, using (4.106), that

(N − 1)∫
t

0
eαθ

N

∑
j=2

(wTj1(θ)Rj1wj1(θ) − h̄
2
j1e

αh̄j1(ėy1j)
T
(θ)Rj1ė

y
1j(θ))dθ ≤ 0.

(4.109)
We can also observe from (4.78) that the operator ∆{sji} characterizes the influ-

ence of every jth system, j ∈ {2,3, . . . ,N}, on every ith system, i ∈ {2,3, . . . ,N},
j ≠ i. Therefore, we have from (4.107) that

∫

t

0

N

∑
i=2

N

∑
j=2

eαθ(wTji(θ)Rjiwji(θ)

− h̄2
jie

αh̄ji(ėy1i(θ) − ė
y
1j(θ))

TRji(ė
y
1i(θ) − ė

y
1j(θ)))dθ ≤ 0.

(4.110)

Consequently, by adding the inequalities (4.108), (4.109), and (4.110), we have

∫

t

0
S(θ, ėy(θ), w̃(θ)) ≤ 0, (4.111)

where w̃(t) = (∆ėy)(t), and the function S is as defined in (4.95).

Note that the result provided in Lemma 4.17 can be related to the deve-
lopments in Chapter 3, since the property of every single operator ∆{sij} can
be characterized using supply functions of the form given in Lemma 3.4 (in the
absence of delay). In Lemma 4.17, the variable α corresponds to the decay-rate
that we will use in the next theorem giving exponential synchronization. When
α = 0, S characterizes the L2 boundedness property of the operator ∆ [65], which
is composed of the operators ∆{s1i}, ∆{sj1} and ∆{sji}, i, j ∈ {1,2, . . . ,N}, j ≠ i,
as shown in (4.77), (4.78). However, we also have a weighted element α in or-
der to take into account system decay rate. Now, in the following theorem,
using the supply function S in (4.95), a positive definite storage function W ,
and the notion of dissipativity theory, we obtain inequalities that check if ex-
ponential synchronization can be attained in the presence of sampling-induced
perturbations. Then, we remark how the exponential synchronization property
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of the system in continuous-time, i.e., in the absence of sampling-induced effects,
can be used to obtain a storage function W . First, we introduce the following
dissipativity-based theorem that guarantees exponential synchronization, under
the assumption that a positive definite storage function W exists, i.e., synchro-
nization is achieved in continuous-time.

Theorem 4.18. Consider the feedback interconnection G −∆ given by (4.51),
(4.52), (4.54), (4.80), and (4.78), and assume that there exists a continuously
differentiable storage function W ∶ Rn → R+ and scalars 0 < c1 < c2, α > 0 such
that

c1∥e∥
2
≤W (e) ≤ c2∥e∥

2, (4.112)

and

Ẇ (e(t)) + αW (e(t)) ≤ e−αtS(t, ėy(t), w̃(t)),∀t ≥ 0, (4.113)

where the function S(t, ėy(t), w̃(t)) is given by (4.95), and e(t) = [eTy (t) eTz (t)]
T

is governed by (4.51), (4.54). Then, for given coupling gain σ, and sampling
interval bounds h̄ij, for all i, j ∈ {1,2, . . . ,N}, i ≠ j, the system (4.42), (4.4)
exponentially synchronizes with a decay rate of at least α/2.

Proof. Consider the function

U(t) = eαtW (e(t)) − ∫
t

0
S(θ, ėy(θ), w̃(t))dθ,∀t ≥ 0, (4.114)

where e(t) = [eTy (t) eTz (t)]
T

. From condition (4.113), we can conclude U̇(t) ≤
0,∀t ≥ 0, implying U(t) ≤ U(0), i.e.,

eαtW (e(t)) − ∫
t

0
S(θ, ėy(θ), w̃(t))dθ ≤W (e(0)). (4.115)

Therefore,

eαtW (e(t)) ≤W (e(0)) + ∫
t

0
S(θ, ėy(θ), w̃(t))dθ, (4.116)

and using Lemma 4.17, we have

W (e(t)) ≤ e−αtW (e(0)). (4.117)

Consequently, using (4.112), we obtain

∥e(t)∥2
≤
c2
c1
e−αt∥e(0)∥2, (4.118)

i.e.,

∥e(t)∥ ≤

√
c2
c1
e
−α
2 t∥e(0)∥, (4.119)
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implying that the equilibrium e = [eTy eTz ]
T

= [0 0], of the feedback-
interconnection G − ∆, given by (4.51), (4.52), (4.54), (4.80), and (4.78), is
exponentially stable with a decay rate of at least α/2.

Now, by virtue of Lemma 4.16, we know that the feedback-interconnection
G−∆ represents the synchronization error dynamics of system (4.42), (4.4), given
by (4.51), (4.52), (4.54), and (4.55). Therefore, we have that the equilibrium
point e = 0 of the synchronization error dynamics for system (4.42), (4.4) is
exponentially stable with a decay-rate of at least α/2. In other words, the
system (4.42), (4.4) exponentially synchronizes at a rate of at least α/2.

Remark : Theorem 4.18 has been adapted from the result in [93], wherein a
similar dissipativity based framework was used to analyse the stability of single-
loop input-affine nonlinear systems with sampled-data control. The conditions
for synchronization in the sampling-free case imply the existence of storage func-
tion W , provided that σ is sufficiently large (as given in Theorem 4.12). More-

over, ∣e−αtS∣ ≤ ψ(h)∣e∣2, for some ψ ∈ K, and e = [eTy eTz ]
T

. It can be seen
from (4.95) that the term e−αtS, used in the dissipation inequality (4.113), is
quadratic in h̄ij , ė

y
1i and wij , i, j ∈ {1,2, . . . ,N}. By the definition of wij in

(4.79), it can be estimated that ∣wij ∣ ≤ h̄
2
ij ∣ė

y
1j − ė

y
1i∣, i, j ∈ {1,2, . . . ,N}, i ≠ j.

Then, ∣e−αtS∣ ≤ p1h
2∣ėy1i∣

2 for some constant p1 and h = maxi,j h̄ij . Addition-
ally, ∣ėy1i∣ ≤ p2∣e

y
1i∣ for some constant p2, which exists because the vector field f

is sufficiently smooth and solutions of the coupled system (4.1), (4.4) are uni-
formly bounded and uniformly ultimately bounded. Thus, ∣e−αtS∣ ≤ p3h

2∣ey1i∣
2,

for some constant p3. In addition, ∣ey1i∣
2 ≤ p4W for some constant p4 as the

storage function W used in the sampling-free case is quadratic. In conclusion,
∣e−αtS∣ ≤ p5h

2W , for some constant p5, which results in Ẇ + (α − p5h
2)W < 0.

This guarantees exponential synchronization provided that α > p5h
2, which can

be guaranteed by choosing a small value of h.
The value of the synchronization error decay-rate α cannot be chosen freely,

since the upper-bound on α relates to the slowest time-scale of the żi = q(zi, yi)
dynamics of the subsystem given in (4.42). Note that under the constraint of
synchronized outputs y1 = y2 = ⋅ ⋅ ⋅ = yN , the rate of synchronization of the
zi states is determined by this “slow” time-scale. An estimate of the upper-
bound on α can be obtained from the Demidovich condition. Condition (4.113)
can be solved for matrices Pz and Py (defining storage function W ), and Rij
(defining supply function S) using a gridding approach similar to the one given
in Algorithm 1 in Chapter 2, using solvers such as SOSTOOLS. It should be
noted that in this case, the gridding can be done over α, h̄ij and σ.

4.6 Numerical Example

Using a storage function W of the form (4.46), and the supply function S defined
in (4.95), we can use the condition (4.113) as a check for exponential synchro-
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nization in the presence of sampling-induced perturbations. Given a network
topology defined by the adjacency matrix A in (4.2), the values for parame-
ters σ and h̄i, i ∈ {1,2, . . . ,N} for which condition (4.113) is satisfied, can be
computed using standard MATLAB routines. This is illustrated in this section.

Let us consider a three-agent Fitzhugh-Nagumo system [40], [87], connected
via a ring network, defined by the adjacency matrix

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0
0 0 1
1 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (4.120)

The individual sub-system dynamics is given by

żi(t) = 0.08(yi(t) + 0.7 − 0.8zi(t))

ẏi(t) = yi(t) −
y3
i (t)

3
− zi(t) + 0.5 + ui(t), i ∈ {1,2,3},

(4.121)

where the synchronizing coupling laws are given by (4.4). The semi-passivity
property with quadratic storage function for individual sub-systems has been
shown in [125].

4.6.1 Synchronization Error Dynamics Modelling

The synchronization error e(t) = [eTz (t) eTy (t)]
T

is defined by

ez(t) = [
ez12(t)
ez13(t)

] = [
z1(t) − z2(t)
z1(t) − z3(t)

] , (4.122)

and

ey(t) = [
ey12(t)
ey13(t)

] = [
y1(t) − y2(t)
y1(t) − y3(t)

] . (4.123)

Consequently, the synchronization error dynamics of the internal state zi, i ∈
{1,2,3}, is as given in (4.52), i.e.,

ėz12(t) = 0.08(ey12(t) − 0.8ez12(t)),

ėz13(t) = 0.08(ey13(t) − 0.8ez13(t)).
(4.124)

Additionally, using (4.80) in Lemma 4.16, and the fact that

y3
1 − y

3
2 =

1

4
((ey12)

3
+ 3(2y1 − e

y
12)

2ey12) , (4.125)
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the synchronization error dynamics of the states yi, i ∈ {1,2,3} can be given by

ėy12(t) = y1(t) −
y3

1(t)

3
− z1(t) − (y2(t) −

y3
2(t)

3
− z2(t))

− σ(ey12(t) + e
y
13(t)) − w̃12(t)

= ey12(t) − e
z
12(t) −

1

12
((ey12(t))

3
+ 3(2y1(t) − e

y
12(t))

2ey12(t))

− σ(ey12(t) + e
y
13(t)) − w̃12(t),

(4.126)

and

ėy13(t) = y1(t) −
y3

1(t)

3
− z1(t) − (y3(t) −

y3
3(t)

3
− z3(t))

− σ(ey13(t) + a23(e
y
13(t) − e

y
12(t))) − w̃13(t)

= ey13(t) − e
z
13(t) −

1

12
((ey13(t))

3
+ 3(2y1(t) − e

y
13(t))

2ey13(t))

− σ(ey13(t) + a23(e
y
13(t) − e

y
12(t))) − w̃13(t),

(4.127)

where the sampling-induced effects in the synchronization error dynamics are as
defined in (4.78), i.e.,

w̃12(t) = (∆12ėy)(t) ∶= σ(∆{s12}ė
y
12)(t) + σ(∆{s31}ė

y
13)(t)

= σw12 + σw31,
(4.128)

and

w̃13(t) = (∆13ėy)(t) ∶= σ(∆{s31}ė
y
13)(t) + σ(∆{s23}(ė

y
13 − ė

y
12))(t)

= σw31 + σw23.
(4.129)

Note that the sampling-induced perturbations on each communication link de-
pending on the network topology, is as given in (4.79), i.e.,

w12 = (∆{s12}ė
y
12)(t),

w23 = (∆{s23}(ė
y
13 − ė

y
12))(t),

w31 = (∆{s31}ė
y
13)(t).

(4.130)

4.6.2 Synchronization Analysis

Using a storage function of the form given in (4.46), with Pz = I2×2 ⊗Pz, Pz > 0
and diagonal matrix Py = diag(P

y
12, P

y
13) > 0, we have

W (e(t)) = Pz(e
z
12(t))

2
+ Pz(e

z
13(t))

2
+ (P y12e

y
12(t))

2
+ P y13(e

y
13(t))

2, (4.131)

and
Ẇ (e(t)) = 2 (Pze

z
12(t)ė

z
12(t) + Pze

z
13(t)ė

z
13(t)

+P y12e
y
12(t)ė

y
12(t) + P

y
13e

y
13(t)ė

y
13(t)) .

(4.132)
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The sampling-induced perturbations on the synchronization error dynamics i.e.,
w̃12(t) and w̃13(t) given by (4.128) and (4.129), respectively, can collectively be
described using the operator ∆, as shown in (4.93). Therefore, we have

w̃(t) = [
w̃12(t)
w̃13(t)

] = (∆ėy)(t). (4.133)

Now, using Lemma 4.17, the supply function characterizing the properties of the
operator ∆ can be given by

S(t, ėy(t), (∆ėy)(t)) = e
αt

((R12w
2
12(t) − h̄

2
1,2e

αh̄1,2R12(ė
y
12(t))

2
)

+ 2 (R31w
2
31(t) − h̄

2
3,1e

αh̄3,1R31(ė
y
13(t))

2
)

+ (R23w
2
23(t) − h̄

2
2,3e

αh̄2,3R23(ė
y
13 − ė

y
12)

2
(t))),

(4.134)

where ėy12 and ėy13 are given by (4.126) and (4.127), respectively. Now that

we have W (e(t)), Ẇ (e(t)) given by (4.131), (4.132), respectively, and the sup-
ply function S in (4.134), the required criterion guaranteeing exponential syn-
chronization can be obtained using the dissipation inequality (4.113) given in
Theorem 4.18. The criterion can be used to decide the trade-off between the
rate of synchronization α, the coupling strength σ, and the sampling interval
bounds h̄i, i ∈ {1,2,3}. For example, let us fix the rate of synchronization
to be 0.01, and assume that all the sensors in the networked system have the
same sampling-interval bound, i.e., h̄1 = h̄2 = h̄3 = h̄. Note that this still im-
plies that the communication between the individual sub-systems can still be
asynchronous. Standard MATLAB routines such as SOSTOOLS [96] can be
used to compute the values of σ and h̄ for which condition (4.113) is satisfied
with (4.132), (4.131) and (4.134). Figure 4.3 gives the trade-off between the
sampling-interval bound h̄ and the coupling strength σ. The critical value of σ,
below which synchronization is not possible, was found to be σ = σ̄ = 1.1. The
profile of the synchronization feasibility region shown in Figure 4.3 is similar to
the profile obtained for two Fitzhugh-Nagumo systems with time-delayed cou-
pling [124] and asynchronous sampled-data coupling [130].
Remark : Note that for the chosen example, the sufficiency condition for bound-
edness of solutions given in Theorem 4.8 may not be satisfied for some values
of coupling strength σ. However, the exponential synchronization property is
still guaranteed under an additional assumption of ultimate boundedness of so-
lutions.

4.7 Conclusion

In this chapter, a novel dissipativity-based approach towards synchronization
analysis of nonlinear networked systems, directionally coupled via a generic
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Figure 4.3: Trade-off between coupling strength σ and maximum sampling in-
terval h̄1 = h̄2 = h̄3 = h̄, for the three-agent Fitzhugh-Nagumo system, with
α = 0.01.

network topology under asynchronous, aperiodic sampled-data coupling, is in-
troduced. The approach builds on remodelling the sampled-data system as a
feedback-interconnection of a continuous-time system operator that captures
the synchronization dynamics of the networked system in the absence of sam-
pling, and an operator that characterizes the sampling effects. The properties of
this feedback-interconnection are then studied to provide a dissipativity-based
criterion that checks for exponential synchronization of the networked nonlinear
system with sampled-data coupling. Using a networked three-agent Fitzhugh-
Nagumo neuron system, the effectiveness of the provided criterion in guaran-
teeing exponential synchronization and deciding the trade-off between coupling
strength, sampling-interval bounds, and rate of synchronization, is illustrated.
In the context of large-scale networked systems, an interesting future research
direction would be the exploitation of the framework introduced in this chapter
to study the relation between dropping/inclusion of more network connections
and synchronization properties.



Part IV

Closing





Chapter 5

Conclusions and Recommendations

In this thesis, complex networked systems which are well known to be relevant
in numerous scientific and technological applications such as mobile sensor net-
works, swarm robotics, smart grids, etc., have been studied. The thesis focussed
on large-scale networked systems which involve information transmission over
communication channels/networks. These communication networks are known
to be difficult to analyse due to inherent effects such as sampling and delay,
which lead to complex asynchronous sensing and actuation throughout the net-
worked system, at local and global levels. In this thesis, for settings with multi-
ple control loops, we show that the overall system can be unstable in scenarios
wherein individual control loops sample asynchronously with respect to each
other. The detrimental effects of delay-induced asynchrony on global networked
system properties such as synchronization is also well established in literature
and scientific/technological examples. Consequently, this thesis focussed on pro-
viding techniques that can guarantee stability and synchronization properties of
large-scale networked systems under asynchronous communication.

5.1 General conclusions on the results

Different methods that analyse system properties in the presence of sampling
and/or delay induced asynchrony, are available in literature. Among these ex-
isting methods, this thesis focussed on the input-output approach. This approach
is valuable from an engineering perspective due to advantages such as it allows
for clear separation of continuous-time dynamics and communication network
effects, and the fact that it provides conditions for desired system properties in
the robust control framework, which is widely popular in engineering applica-
tions. To this date, in the scope of large-scale networked systems subject to
asynchronous sensing and actuation, the input-output analysis framework has



136 Chapter 5. Conclusions and Recommendations

not received much attention. In this direction, this thesis has explored the fol-
lowing research objectives:

1. To develop modelling and analysis tools for large-scale networked linear
dynamical control systems subjected to asynchrony induced by sampling
and delay, at local and global levels.

2. To develop modelling and analysis tools for single-loop nonlinear networked
control systems subjected to asynchronous sensing and actuation.

3. To develop modelling and analysis tools that guarantee stability and syn-
chronization properties within large-scale nonlinear networked control sys-
tems subjected to asynchronous communication.

The research carried out to achieve the aforementioned objectives led to a num-
ber of contributions, which can be summarized as follows. In this list, the num-
bering of the contributions corresponds to the numbering of the aforementioned
research objectives.

1. Development of a novel modelling and frequency-domain based analysis
approach, using Integral Quadratic Constraints, for stability analysis of
(possibly large-scale) decentralized linear networked control systems with
asynchronous, aperiodic sampling and delay.
In Chapter 2, first, an approach is introduced to represent the state-space
model of a single-loop LTI control system with asynchronous sensors and
actuators, as an interconnection between a continuous-time system op-
erator and an operator that captures the effects of asynchrony. Conse-
quently, by extending this preliminary result, the decentralized, sampled-
data, asynchronous LTI state-space model under consideration, is refor-
mulated as a feedback interconnection. By characterizing the properties
of the operator that captures asynchrony effects, using an IQC, stability
results on the feedback interconnection are provided, which imply global
exponential stability of the decentralized system. Two scenarios, namely
the large-delay case and the small delay case, are considered. In the large-
delay case, the effects of asynchrony induced by sampling and delay are
captured using a single operator. In contrast, these effects are captured
using two separate operators in the small-delay case, which allows for less
conservative results, in comparison to the result one could have obtained
by keeping one single operator as in the large-delay case. The effectiveness
of the proposed results have been illustrated using a numerical example.

2. Development of a novel modelling and analysis approach based on dissi-
pativity Theory, for stability analysis of single-loop nonlinear networked
control systems subject to asynchronous, aperiodic sampling and delay.
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In Chapter 3, a framework that holds for a general class of nonlinear sys-
tems was introduced. A preliminary result inspired from the notion of ex-
ponential dissipativity is used to provide stability conditions for a class of
feedback interconnected systems, while guaranteeing a desired decay-rate.
The nonlinear sampled-data system is remodelled as a feedback intercon-
nection of the nominal closed-loop system without any communication
induced asynchrony, and an operator that captures the effects of sampling
and delay, thereby leading to constructive stability conditions. The pro-
posed approach leads to conditions expressed in terms of dissipativity-type
properties of the system, for which many results exist in literature. Addi-
tionally, the developed conditions aid in making trade-offs between control
performance and the bounds on sampling interval and delay.

3. Development of a novel modelling and analysis approach for synchro-
nization analysis of generic multi-agent networked systems with directed,
weighted, diffusive, coupling laws and asynchronous information transmis-
sion.
In Chapter 4, the proposed approach builds on remodelling the multi-
agent asynchronous networked system as a feedback interconnection of a
continuous-time system operator that captures the synchronization dy-
namics of the networked system in the absence of sampling, and an op-
erator that characterizes the effects of sampling-induced asynchrony. The
properties of this feedback-interconnection are then studied to provide a
dissipativity-based criterion that checks for exponential synchronization of
the networked nonlinear system with sampled-data coupling. The devel-
oped condition aids in making trade-offs between the coupling (gain) be-
tween sub-systems, and the bounds on sampling intervals for each commu-
nication channel. Using a networked three-agent Fitzhugh-Nagumo neuron
system, the effectiveness of the provided criterion in guaranteeing exponen-
tial synchronization is illustrated.

5.2 Recommendations

Although the contributions given in this thesis address the research objectives
of this thesis, when considered in the context of the high-level open challenges
there is scope for further work.

5.2.1 Recommendations for Stability Analysis

1. The stability analysis part of this thesis considers asynchrony arising from
two main communication network effects, i.e., sampling and delay. How-
ever, in realistic scenarios, there are other effects such as quantization,
event-triggered communications, complex data scheduling protocols, etc.,
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that introduce perturbations in the networked system. Considering these
effects in the scope of Chapters 2 and 3 is still a largely open problem. For
networked dynamical systems, [36] provides initial work on incorporating
quantization along with sampling and delay in an input-output framework.

2. The mathematical computation of upper bounds for the norm of operators
characterizing sampling and delay (Chapter 2 and Chapter 3), as well as
the evaluation of supply function (Chapter 4) introduce conservativeness in
the results. Exploring other methods could lead to less conservative results.
For example, the gain bound presented in [18] is based on Wirtinger’s In-
equality. Additionally, less conservative versions of Wirtinger’s Inequality
have been proposed in [115]. It would be useful to exploit these properties
in future works. Moreover, in the scope of Chapter 3, it would be inter-
esting to extend the approach to take into account other anti-passivity
characterizations of sampling effects [18], [37], [46], and obtain less conser-
vative results.

3. The framework in Chapter 2 holds for decentralized LTI systems. Con-
sidering a more generic distributed setting with communication among
individual controllers is a possible extension of the result.

4. Extending the dissipativity-based approach proposed in Chapter 3 to prob-
lem settings considering large-scale systems is still an open problem.

5. In Chapter 3 (and Chapter 4), it is considered that all the states of the
sub-systems (the single-loop nonlinear system in Chapter 3), have a single
sensor-actuator pair. It would be interesting to explore a more realis-
tic scenario which includes multiple sensors and actuators, with different
sampling and actuation sequences.

5.2.2 Recommendations for Synchronization Analysis

1. In Chapter 4, only sampling-induced asynchrony has been considered.
While there are other sources of asynchrony as mentioned previously, even
considering delay in this framework is a non-trivial extension that needs
to be explored. The synchronization manifold invariance result provided
in Chapter 5 will not hold if sampling and delay induced asynchrony come
into effect together. In such scenarios, instead of full state synchronization,
practical synchronization1, i.e., state synchronization by allowing certain
tolerance in synchronization error, needs to be considered.

2. In Chapter 4, the quadratic storage function that is considered in the dissi-
pativity based synchronization criterion, arises from the condition that for
systems that exponentially synchronize in continuous-time, such a storage

1In real experimental contexts, practical synchronization might be hard to define and verify.
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function exists. While this is a good starting point in analysing exponential
synchronization in the presence of sampling induced asynchrony, explor-
ing other candidates for storage function can be an interesting research
direction.

3. The framework in Chapter 4 could be extended to consider large-scale
nonlinear interconnected systems with heterogeneous sub-systems. This
extension could be interesting in the scope of problems such as ensemble
control, synchronization in heterogeneous systems, etc. By considering
sampling- and delay-induced asynchrony as perturbations to the large-scale
system (with heterogeneous subsystems), it could be possible to develop
a similar framework that builds upon existing results in continuous-time,
i.e., in the absence of sampling induced asynchrony.

A global recommendation is that the frameworks developed in this thesis, in
Chapters 2, 3, and 4, can be utilized in experimental settings and engineering
applications. In automatic cruise control, vehicle platooning [29], [31], applica-
tions that require mobile robot control over communication networks [62], etc., it
could be interesting to apply the approaches proposed in Chapter 2 and Chap-
ter 3 to obtain trade-offs between sampling periods, delays, and performance
requirements. The framework proposed in Chapter 4 can be utilized to study
synchronization properties of Hindmarsh-Rose neurons in the presence of sam-
pling induced asynchrony. A similar study in the case of asynchronous network
communication due to transmission delay can be found in [123].
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