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Summary

Active chatter control in high-speed milling processes

In present day manufacturing industry, an increasing demand for high-
precision products at a high productivity level is seen. High-speed milling
is a manufacturing technique which is commonly exploited to produce high-
precision parts at a high productivity level for the aeroplane, automotive and
mould and dies industry.

The performance of a manufacturing process such as high-speed milling, in-
dicated by the material removal rate, is limited by the occurrence of a dynamic
instability phenomenon called chatter. The occurrence of chatter results in
an inferior workpiece quality due to heavy vibrations of the cutter. Moreover,
a high level of noise is produced and the tool wears out rapidly. Although
different types of chatter exist, regenerative chatter is recognised as the most
prevalent type of chatter. The occurrence of (regenerative) chatter has such a
devastating effect on workpiece quality and tool wear that it should be avoided
at all times.

The occurrence of chatter can be visualised in so-called stability lobes di-
agrams (sld). In an sld the chatter stability boundary between a stable cut
(i.e. without chatter) and an unstable cut (i.e. with chatter) is visualised in
terms of spindle speed and depth of cut. Using the information gathered in a
sld, the machinist can select a chatter free operating point.

In this thesis two problems are tackled. Firstly, due to e.g. heating of the
spindle, tool wear, etc., the sld may vary in time. Consequently, a stable
working point that was originally chosen by the machinist may become unsta-
ble. This requires a (controlled) adaptation of process parameters such that
stability of the milling process is ensured (i.e. chatter is avoided) even under
such changing process conditions. Secondly, the ever increasing demand for
high-precision products at a high productivity level requires dedicated shaping
of the chatter stability boundary. Such shaping of the sld should render work-
ing points (in terms of spindle speed and depth of cut) of high productivity
feasible, while avoiding chatter. These problems require the design of dedi-
cated control strategies that ensure stable high-speed milling operations with
increased performance.

In this work, two chatter control strategies are developed that guarantee
high-speed chatter-free machining operations. The goal of the two chatter
control strategies is, however, different.

The first chatter control strategy guarantees chatter-free high-speed milling
operations by automatic adaptation of spindle speed and feed (i.e. the feed is
not stopped during the spindle speed transition). In this way, the high-speed
milling process will remain stable despite changes in the process, e.g. due to
heating of the spindle, tool wear, etc. To do so, an accurate and fast chat-
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ter detection algorithm is presented which predicts the occurrence of chatter
before chatter marks are visible on the workpiece. Once the onset of chatter
is detected, the developed controller adapts the spindle speed and feed such
that a new chatter-free working point is attained. Experimental results con-
firm that by using this control strategy chatter-free machining is ensured. It is
also shown experimentally that the detection algorithm is able to detect chat-
ter before it is fully developed. Furthermore, the control strategy ensures that
chatter is avoided, thereby ensuring a robust machining operation and a high
surface quality.

The second chatter control strategy is developed to design controllers that
guarantee chatter-free cutting operations in an a priori defined range of process
parameters (spindle speed and depth of cut) such that a higher productivity
can be attained. Current (active) chatter control strategies for the milling
process cannot provide such a strong guarantee of a priori stability for a pre-
defined range of working points. The methodology is based on a robust con-
trol approach using µ-synthesis, where the most important process parameters
(spindle speed and depth of cut) are treated as uncertainties. The proposed
methodology will allow the machinist to define a desired working range (in
spindle speed and depth of cut) and lift the sld locally in a dedicated fashion.

Finally, experiments have been performed to validate the working principle
of the active chatter control strategy in practice. Hereto, a milling spindle with
an integrated active magnetic bearing is considered. Based on the obtained ex-
perimental results, it can be stated that the active chatter control methodology,
as presented in this thesis, can indeed be applied to design controllers, which
alter the sld such that a pre-defined domain of working points is stabilised.
Results from milling tests underline this conclusion. By using the active chatter
controller working points with a higher material removal rate become feasible
while avoiding chatter.

To summarise, the control strategies developed in this thesis, ensure ro-
bust chatter-free high-speed milling operations where, by dedicated shaping of
the chatter stability boundary, working points with a higher productivity are
attained.



Samenvatting

Active chatter control in high-speed milling processes

De hedendaagse maakindustrie wordt gekenmerkt door toenemende eisen
ten aanzien van nauwkeurigheid voor hoogwaardige producten die bovendien zo
efficient mogelijk geproduceerd moeten worden. Hogesnelheidsfrezen is een pro-
ductie techniek die vaak wordt toegepast voor het vervaardigen van producten
met een hoge nauwkeurigheid en hoge productiviteit voor de vliegtuigindustrie,
autoindustrie en de vervaardiging van matrijzen.

De verspaningssnelheid, een maat voor de productiviteit van een bewer-
kingsprocess, wordt vaak beperkt door een dynamisch instabiliteitsfenomeen
genaamd chatter. Chatter gaat gepaard met het hevig trillen van de frees, het-
geen resulteert in een inferieure kwaliteit van het oppervlak van een werkstuk.
Daarnaast genereert chatter veel (onaangenaam) geluid en slijt de frees snel.
Er zijn verschillende oorzaken aan te wijzen voor het ontstaan van chatter.
Echter, het zogenaamde regeneratieve effect is een van de meest voorkomende
oorzaken van chatter. Het optreden van chatter heeft een dusdanig negatieve
impact op de kwaliteit van een werkstuk, als ook slijtage aan de frees, dat het
te allen tijde vermeden dient te worden.

De grens tussen een stabiele freesbewerking (geen chatter) en een instabiele
freesbewerking (met chatter) kan worden gevisualiseerd in een stabiliteitsdia-
gram. Hierin wordt de stabiliteitsgrens gekarakteriseerd in termen van snede
diepte en toerental. Op basis van het stabiliteitsdiagram kan de operator van
een freesmachine een werkpunt kiezen dat resulteert in een stabiele freesbewer-
king zonder chatter.

In dit proefschrift worden twee problemen omtrent het voorkomen van chat-
ter besproken. Allereerst, door, bijvoorbeeld, temperatuursveranderingen in de
spindel, slijtage van de frees, etc, varieert het stabiliteitsdiagram als functie van
de tijd. Hierdoor kan het voorkomen dat een oorspronkelijk gekozen werkpunt
instabiel wordt. Om ervoor te zorgen dat, ondanks veranderingen in het proces,
het freesproces stabiel blijft, is een gecontrolleerde aanpassing van de kenmer-
kende parameters van het freesproces noodzakelijk. Ten tweede, om te kunnen
voldoen aan de steeds groeiende vraag naar een efficient bewerkingsproces voor
hoogwaardige producten, is een lokale aanpassing van het stabiliteitsdiagram
noodzakelijk. Door een specifieke lokale aanpassing van het stabiliteitsdiagram
worden werkpunten, die een hoge productiviteit representeren maar die oor-
spronkelijk in chatter zouden resulteren, gestabiliseerd. Om de twee hiervoor
besproken problemen op te lossen, dienen regelstrategieën te worden ontworpen
zodanig dat freesbewerkingen kunnen worden uitgevoerd zonder dat chatter op-
treedt en die resulteren in een significante toename van de productiviteit van
het freesproces.

In dit onderzoek zijn twee regelstrategieën ontwikkeld welke een stabiele
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hogesnelheidsfreesbewerking garanderen. Echter, de beide regelstrategieën zijn
ontwikkeld met een geheel verschillend doel.

In de eerste regelstrategie wordt een automatische aanpassing van het toe-
rental en de voeding gegenereerd, waarbij de voeding niet wordt gestopt ge-
durende de toertental aanpassing. Hierdoor blijft het hogesnelheidsfreesproces
stabiel (geen chatter) ondanks veranderingen in het proces zoals, bijvoorbeeld,
temperatuursveranderingen in de spindel, slijtage van de frees, etc. Om chatter
nauwkeurig en voldoende snel te detecteren is een detectie algoritme ontwikkeld
dat in staat is om groeiende chatter trillingen te detecteren voordat de typi-
sche chatter markeringen zichtbaar zijn op het werkstuk. Wanneer de groei van
chatter trillingen wordt gedetecteerd, past de ontworpen regelaar het toerental
zodanig aan dat een nieuw stabiel werkpunt wordt bereikt. Door middel van
experimenten is aangetoond dat met deze regelstrategie freesbewerkingen zon-
der chatter kunnen worden gegarandeerd. Daarnaast is aangetoond dat met
het ontwikkelde detectie algoritme het mogelijk is om de groei van chatter te
detecteren voordat chatter markeringen zichtbaar zijn op het werkstuk. Om-
dat de regelstrategie chatter voorkomt kan een robuuste freesbewerking met
een hoge oppervlaktenauwkeurigheid worden gegarandeerd.

De tweede regelstrategie resulteert in regelaars die a priori een set van werk-
punten (toerental en snede diepte) stabiliseert zodaning dat, voor elk van de
werkpunten in de set, een chatter-vrije freesbewerking kan worden uitgevoerd.
Op deze manier kan de productiviteit van het hogesnelheidsfreesproces aan-
zienlijk worden verhoogd. Een dusdanige a priori stabiliteitsgarantie voor een
set van werkpunten is nog niet eerder beschreven in de literatuur met betrek-
king tot het freesproces. De aanpak is gebasseerd op robuuste regeltechniek
via µ-synthese. Hiertoe zijn het toerental en de snede diepte als onzekerheden
meegenomen in de regelaarsynthese. De gepresenteerde regelstratgie geeft de
operator van een freesmachine de vrijheid om een vooraf gedefinieerde set van
werkpunten te stabiliseren zodat het stabileitsdiagram lokaal wordt aangepast.

Experimenten, die zijn uitgevoerd met de actieve chatter regelstrategie, to-
nen aan dat de regelstrategie kan worden toegepast in de praktijk. Hiertoe is
een freespindel, die is uitgerust met een actief magneetlager, gebruikt. Op basis
van de experimenten kan worden geconcludeerd dat het mogelijk is om, met de
ontworpen regelstrategie, een regelaar te ontwerpen die het stabiliteitsdiagram
lokaal aanpast zodanig dat een set van werkpunten (toerental en snede diep-
te) wordt gestabiliseerd. Dezelfde conclusies kunnen worden getrokken uit de
resultaten van freestesten. Wannneer de actieve chatter regelstrategie wordt
gebruikt, kunnen werkpunten worden gekozen die een hogere productiviteit
representeren en bovendien waarvoor geen chatter optreedt.

Samenvattend kan worden gesteld dat met de regelstrategieën, zoals ont-
wikkeld in dit proefschrift, een robuuste freesbewerking kan worden uitgevoerd
waarbij werkpunten die een hogere productiviteit representeren kunnen worden
gekozen doordat het stabiliteitsdiagram lokaal is aangepast.
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General Notation
ȧ time derivative
a vector
A matrix
B nK-dimensional open ball with radius one
C set of all complex numbers
Dτ delay operator
E expectation operator
∂f(x) Clarke subdifferential of f with respect to x
R set of all real numbers
Z set of all integer numbers
∇f(x) classical gradient of f with respect to x

Latin Letters
āp maximal axial depth of cut mm
â predicted acceleration ms−2

ã perturbation on the periodic movement of measured
acceleration

ms−2

a measured acceleration ms−2

a∗ periodic movement of measured acceleration ms−2

ae radial depth of cut mm
ap axial depth of cut mm
ap,max critical axial depth of cut mm
Bi sample from B

bx, by damping in x/y direction Ns/m
c constant for selecting controller input
cx, cy stiffness in x/y direction N/m
d descent direction
d diameter of the cutter mm
dtol tolerance on descent direction
e process noise vector
e Gaussian white noise
fchat dominant chatter frequency Hz

f̂chat estimated dominant chatter frequency Hz
F a actuator force N
F t force acting at tooltip N
fs sampling frequency Hz
fz chip load (feed per tooth) mm/tooth
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Frad radial force N
Ftang tangential force N
fC range of chatter frequencies Hz
fc basic chatter frequency Hz
fSP range of spindle revolution frequency harmonics Hz
fsp spindle speed frequency Hz
Ft,xmeas

, Ft,ymeas
measured cutting forces in x/y direction N

fTPE range of tooth passing frequency harmonics Hz
ftpe tooth passing frequency Hz
G spindle-actuator dynamics transfer function matrix
Gd set of gradients
Gs scaled frequency response function matrix
Gd transfer function nominal delay approximation
gj screen function
H̄ averaged cutting force matrix N/mm2

hj chip thickness at tooth j mm
hj,dyn dynamic chip thickness at tooth j mm
hj,stat static chip thickness at tooth j mm
ic controller output A
I identity matrix
i imaginary number
i0 bias current amb A
j tooth number
Jc spindle speed selection cost function
Jp, Ju detection algorithm cost functions
K Kalman gain
Kp controller parameter vector
KS control sensitivity transfer function matrix A/m
K controller transfer function matrix A/m
Ka actuator gain matrix N/A
Ki amb force-current matrix N/A
Ks amb force-displacement matrix N/m
Kp controller weighting gain m/A
Kr radial cutting force parameter N/mm1+xF

Kt tangential cutting force parameter N/mm1+xF

ma,x, ma,y spindle/actuator mass in x/y direction kg
mt,x, mt,y tool mass in x/y direction kg
n spindle speed rpm
nc number of controller states
nd order of perturbation model
ng number of subgradients
nK number of controller parameters
nL number of spindle speed harmonics
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nu number of uncertain spindle modes
nC, nR number of complex/real eigenvalues
npd Padé approximation order
nx number of states of spindle model
p uncertainty model input
P generalised plant
q uncertainty model output
Q estimation covariance matrix
q shift operator
r reference input signal m
Re process covariance matrix
Rw innovation covariance m2s−4

rω , rζ relative uncertainty in eigenfrequency/damping
S direction cosine matrix
s Laplace operator
Sxx power spectral density of signal x
T transformation matrix
T period time s
t time s
Tr residual covariance
Ts sampling period s
uP generalised plant input vector
u input signal
va vibration at the actuator m
vP generalised plant output vector
vt vibration of the tool m
v∗

t periodic movement of the cutter m
vpd Padé approximated displacements m
ṽt perturbation on the periodic movement of the cut-

ter
m

v0 nominal gap displacement amb m
WKS controller performance weighting matrix
w observation noise
Wd transfer function of weighting function for delay in-

terval approximation
x state vector
x∗, ξ∗ periodic solution

x̃, ξ̃ perturbations about periodic solution
xF exponent of cutting force model
x feed direction
y controller input signal m
y normal direction
z performance variable
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z number of teeth

Greek Letters
α, αc step-size
γ positive constant
δap

, δτ , δω, δζ scalar uncertainty
∆ uncertainty set
∆c complex structured uncertainty set

∆̂ extended uncertainty set
ǫ fraction of incomplete waves rad
ǫs gradient sampling radius
ε prediction error periodic part ms−2

εm prediction error ms−2

ζa,x, ζa,y dimensionless damping ratio of spindle/actuator
combination in x/y direction

ζt,x, ζt,y dimensionless damping ratio of tool in x/y direction
η, ηc forgetting factor
θ parameter vector
κ(ω) frequency dependent delay upper bound
λ eigenvalue
µ Floquet multiplier
µ∆ structured singular value
νs,x, νs,y averaged value of frf magnitude in x/y direction
ξ controller state vector
ρl(ω) over-approximated delay upper bound
σ̄ largest singular value
σ standard deviation
τ̄ delay upper bound s
τ delay lower bound s
τ delay s
ϕ

p
vector of sine and cosine series

ϕ
u

vector of perturbation measurements

φe exit angle rad
φj tooth angle of tooth j rad
φp pitch angle rad
φs entry angle rad
χ root of discrete time transfer function
ω frequency rad/s
ωa,x, ωa,y natural frequency of spindle/actuator combination

in x/y direction
rad/s

ωt,x, ωt,y natural frequency of tool in x/y direction rad/s
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Abbreviations
amb active magnetic bearing
ar auto-regressive
arma auto-regressive moving average
bj Box-Jenkins model
crac chatter recognition and control
dde delay-differential equations
dof degree of freedom
frf frequency response function
hsm high-speed milling
lqg linear quadratic Gaussian
lti linear time invariant
ma moving average
mimo multi input multi output
mrr material removal rate
nc numerical control
nlms normalised least mean square
ode ordinary differential equation
prbs pseudo random binary sequence
psd power spectral density
sdm semi-discretisation method
simo single input multi output
siso single input single output
sk Sanathanan-Koerner
sld stability lobes diagram
ssv spindle speed variation
tds time domain simulations
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1

Introduction

1.1 High-speed milling

1.2 Chatter

1.3 Chatter prediction

1.4 Chatter control

1.5 Goals and main contributions of the thesis

1.6 Outline of the thesis

1.1 High-speed milling

An important production step in the manufacturing of mechanical parts is
performed using cutting techniques. In cutting, material is removed from a
workpiece using a tool by creating chips of the metal which is cut. Turning
and milling operations are probably the most well-known cutting techniques.
With the development of spindles that could rotate much faster while retain-
ing a relatively good stiffness in the 1980s, high-speed milling (hsm) became
a well-established technique in the present day manufacturing industry [156].
Different definitions are used in literature to define a distinction between con-
ventional milling and hsm. Sometimes the absolute spindle speed is used,
which may be an unclear definition since the dimension of the spindle is not
given [146]. This leads to another definition, where the product of the mean
bearing diameter Dm in mm and the spindle speed n in rpm is determined. In
[3], a milling operation is defined as high-speed when the product Dmn exceeds
0.5 ·106 mm/min. A third definition is related to the tool and spindle dynamics
and stability of the process, see [146]. Herein, a milling operation is defined as
high-speed when the tooth passing frequency approaches a substantial fraction
of the dominant (most flexible) natural frequency of the spindle-tool dynamics.

In any case, hsm is e.g. used to produce monolithic aluminum structure
parts for the aerospace industry [67, 156] where more than 90% of the original
workpiece is machined. Other applications include the fabrication of moulds
and dies [161, 164] and parts for the automotive industry [116]. The application
of hsm in the manufacturing of mechanical parts, in especially the latter two
applications, where often long and slender tools are used, is especially beneficial
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Table 1.1: Main business indicators for the manufacturing of aircraft and space-
crafts, automotive applications and mould and dies in the European
Union (eu) and the Netherlands (nl) in million euros for the year
2006 [46, 48].

total mould
industry aerospace automotive and die

Turnover eu 7, 984,000 89, 066.9 780, 000.5 88, 645.0

nl 407,1841) 1, 034.9 9, 908.4 5, 937.5
Added value eu 2, 004,000 29, 964.3 143, 991.5 33, 003.6
at factor cost2) nl 74,1481) 348.9 2, 662.6 1, 847.3
Machining cost eu 300,600 4, 494.6 21598.7 4, 495.5

nl 11,122.2 52.3 399.4 277.1
1) values over 2004
2) for definition see [47]

due to the (relatively) high rotational speed of the tool. Therewith, relatively
small radial depth of cuts/feed per tooth can be chosen which results in small
cutting forces without compromising on the material removal rate (mrr), which
is beneficial when machining e.g. thin walled structures.

Next, the relevance of the economic manufacturing sector in the European
Union (eu) and the Netherlands (nl) is briefly discussed. The turnover and
value added at factor cost for the manufacturing of aircraft and spacecrafts,
automotive applications and mould and dies in the European Union (eu) and
the Netherlands (nl) for the year 2006 are listed in Table 1.1. Also the main
business indicators for the total industry of the non-financial economy (which,
next to the listed figures, also includes other types of industry) are listed. It
can be seen that the industries for which high-speed milling operations are
used as a production step in the manufacturing of parts, is a significant part
of the total industry. Therewith, economic growth can be realised when pro-
ductivity of the hsm process is increased. Machining operations account for
15% of the value of all manufactured mechanical parts [21]. Based on these
numbers, the total (annual) machining cost can be determined, see Table 1.1.
By developing new methodologies for machining technologies, the total ma-
chining costs can be reduced. It is expected that this may lead to an increase
in the value added at factor cost. Moreover, this will also have impact on the
turnover of milling machine manufacturers. Hence, increasing productivity,
while maintaining quality/accuracy, is one of the main drivers of the research
in this work.
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(a) No chatter. (b) Chatter.

Figure 1.1: Detail of a workpiece without and with chatter marks.

1.2 Chatter

Chatter is the most obscure and delicate of all problems facing a machinist [153].
Although this statement was made by F.W. Taylor over 100 years ago, it still
remains valid today. Chatter is an instability phenomenon that not only occurs
in milling but also in other machining processes such as turning, drilling and
grinding. Chatter results in large vibrations between the tool and the workpiece
which in turn results in a nonsmooth surface of the workpiece. This can be
seen in Figure 1.1, where pictures of the resulting workpiece for a cut with
and without chatter are given. Next to a nonsmooth surface, chatter results in
rapid wear of spindle and tool and the production of a significant amount of
noise. In principle there are four mechanisms that describe the occurrence of
chatter [172]. Firstly, chatter may occur due to variable friction between tool
and workpiece [27]. Secondly, mode-coupling chatter exists when vibrations in
e.g. the feed direction generate vibrations in the direction normal to the feed
direction [27, 81]. A third mechanism is due to thermo-mechanical effects on the
chip formation [172]. The aforementioned methods are often defined as primary
chatter. The fourth mechanism that describes the occurrence of chatter, and
is often defined as secondary chatter, is regenerative chatter. Regenerative
chatter occurs due to regeneration of waviness of the surface of the workpiece.
Due to the fact that the spindle system is not infinitely stiff, during cutting,
the cutter vibrates and leaves a wavy surface behind on the workpiece. The
next tooth on the cutter encounters the waviness, left behind by the previous
tooth of the cutter, and generates its own wavy surface. Consequently, a phase
difference is present between the two waves which results in a (rapidly) varying
chip thickness. As a result, the forces acting on the cutter vary. By increasing
the axial depth of cut ap, the regenerative effect becomes dominant and, in
turn, chatter occurs. This results in the jumping in and out of cut of the cutter
which results in a nonsmooth surface. At high spindle speeds, the primary
chatter mechanisms diminish and chatter due to regeneration of the waviness
of the surface is most prone to occur [144]. Therefore, the focus in this work



4 Introduction

2

1

Spindle Speed

D
ep

th
o
f
cu

t

ap,critlow

mrr

Figure 1.2: Schematic representation of a typical stability lobes diagram of
a milling process. Working point 1 is considered a conservative
choice. When more accurate milling models are available, working
point 2 may be chosen.

lies on the prevalent type of chatter, i.e. regenerative chatter.

Pioneering work of Tlusty [157] and Tobias [159, 160] resulted in the first
stability analysis for the orthogonal cutting process. Merritt [108] illustrates
that chatter stability analysis can be characterised by a feedback loop. The
result of the stability analysis is the so-called stability lobes diagram (sld). In
an sld the chatter stability boundary between a stable cut (i.e. without chatter)
and an unstable cut (i.e. with chatter) is visualised in terms of spindle speed n
and depth of cut ap. A typical sld is given in Figure 1.2. By using a stability
lobes diagram, a machinist may select chatter free milling conditions directly,
whilst ensuring a high mrr, where mrr ∝ apn. From the sld it can be seen
that a depth-of-cut ap,critlow exists such that the cut is stable (i.e. chatter-free)
for all spindle speeds and all ap ≤ ap,critlow. Furthermore it can be seen that the
lobes become broader and higher as the spindle speed increases as opposed to
low spindle speeds. At low spindle speeds a relatively small change in spindle
speed may lead to a relatively large change in the phase difference between
two consecutive teeth [8]. Due to the broader lobes at high spindle speeds,
the productivity can be substantially increased when the lobes are accurately
predicted by choosing a working point in a lobe (see point 2 in Figure 1.2). As
a result, when high-speed milling became commercially available in the 1990s,
a renewed interest in studying chatter phenomena in high-speed machining was
seen in machining research field.
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1.3 Chatter prediction

In order to avoid chatter, a working point should be selected which guaran-
tees stable cutting conditions as predicted from the stability lobes diagram [8].
As described above, early stability analyses presented by Tlusty, Tobias and
Merritt were based on a model of the orthogonal cutting process where the
cutting force does not depend on time. For the milling process, however, the
stability analysis becomes more complicated due to the rotating tool, the fact
that cutters with multiple teeth are used and multi-degree of freedom spindle
dynamics [172]. The set of equations that describe the milling process is then
modelled by a set of non-autonomous delay-differential equations (dde). Nu-
merous models have been developed to describe the milling process. In Chapter
2, a more in-depth discussion regarding the modelling of the milling process for
the purpose of chatter prediction will be presented. Comprehensive reviews on
models describing the milling process can be found in [8, 49].

Chatter is predicted by analysing the stability properties of the model. One
way to do so is by performing time domain simulations, see e.g. [158]. However,
in general, performing simulations is time-consuming and, moreover, the border
between a stable and unstable cut is not always clear from the simulation data
[49]. Altintas and Budak present a fast analytical method to determine stability
of the milling process [6] based on the Nyquist criterion. Herein, the non-
autonomous term in the dde milling model is approximated by averaging the
cutting forces over one revolution. In order to evaluate the stability properties
of the non-autonomous model describing the milling process, e.g. the semi-
discretisation method (sdm), presented in [72, 75], can be used.

1.4 Chatter control

In the previous section, it has been discussed that one way of dealing with
chatter in machining is to construct a stability lobes diagram (sld) based on
a model of the machining process. Such a sld may be used to select working
points which, on the one hand, guarantee a high mrr and, on the other hand,
avoid the occurrence of chatter. In facing this trade-off, one encounters the
following two problems:

• firstly, by selecting a working point (spindle speed, depth of cut and feed)
that lies below the chatter boundary the process is stable and may exhibit
a high mrr (high up in a lobe). However, due to temperature effects, wear
and tear of the milling machine and tool, the sld may (slowly) vary/shift
over time. As a result, an initially chosen working point may become
unstable. Hence, working points of high mrr (high up in a lobe) are
generally not robust against the occurrence of chatter;

• secondly, some workpiece materials require specific cutting speeds (or
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spindle speeds) which may result in a rather limited mrr if no lobe is
located at this spindle speed.

Therefore, to fulfill the demands of both high productivity and high accuracy
in a machining process and to overcome the above two problems, automated
chatter control strategies may be highly beneficial [100].

In literature, basically three types of chatter control approaches can distin-
guished, namely spindle speed modulation, spindle speed selection and alter-
ation of the spindle dynamics. These approaches will be discussed in the next
sections.

1.4.1 Spindle speed modulation

The goal of spindle speed modulation is to disturb the regenerative effect by
continuously varying the spindle speed. This can be done via sinusoidal or
random spindle speed variation (ssv), see [4, 7, 70, 79, 80, 96, 139, 177]. In
[174], instead of spindle speed variation the rake angle in case of turning is con-
tinuously varied by means of an oscillating cutter. Yang et al. [175] combine
both ssv and variation of the rake angle into a multiple time-varying param-
eter method for chatter suppression in turning. In general, the modulation
parameters need to be specifically determined for each application. Therefore,
Kubica and Ismail [89] propose an algorithm based on fuzzy logic control that
online adjusts the modulation parameters to guarantee chatter free machining.

While most of the work focuses on experimental implementation, the works
in [74, 76, 149] illustrate the influence of the variation amplitude and frequency
for sinusoidal ssv on the stability lobes diagram. It is shown that the optimal
modulation period is equal to two times the spindle speed period.

The application of spindle speed modulation is limited by the inertia (and
actuation power) of the spindle system and can therefore in general not be used
in high-speed machining. Another way of disturbing the regenerative waviness,
that is not limited by the inertia of the spindle, can be realised by using tools
with a non-equidistant tooth distribution. While this strategy can be used
at high speed, it is not desirable due to fact that the chip load is unevenly
distributed over the teeth causing more wear on those teeth.

1.4.2 Spindle speed selection

As described above, an initially chosen working point may become unstable due
to changing process conditions. This can be overcome by adjusting the process
parameters (spindle speed, depth of cut and/or chip load) of the machining
process such that a stable working point is assured even in changing process
conditions. This strategy consists of two parts, namely the detection of (onset)
of chatter and the control algorithm that selects the new setpoint for the process
parameter(s).
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In the majority of the strategies presented in literature, adaptation of the
spindle speed is proposed. The new spindle speed is selected by relying on
the fact that stable machining is guaranteed when a tooth passing frequency
equals the dominant chatter frequency. As a result, the spindle speed selection
strategy requires an accurate detection of chatter and an accurate estimate of
the dominant chatter frequency. Both the detection of (the onset of) chatter
and the estimation of the chatter frequency should, preferably, be available
before any chatter marks are visible on the workpiece. Current chatter detec-
tion methods, see [11, 23, 29, 51, 145, 147], might work well for low spindle
speeds but they either utilise too much computational time to be able to detect
chatter before it has already developed towards the fully grown stage or are
not able to estimate the dominant chatter frequency. A notable exception is
the work presented in [42], where an online chatter detection methodology in
case of turning is presented. Based on a discrete autoregressive moving average
model, chatter modes are estimated from the vibration signal. Since in case of
milling the vibration signal also consists of spindle speed related frequencies,
see [77], the method presented in [42] cannot directly be used for the milling
process.

Weck et al. [170] filter the tooth passing excitation frequency from the
measured power spectrum of measured spindle torque. A new setpoint is then
calculated by setting the spindle speed equal to the measured chatter frequency.
The so-called chatter recognition and control (crac) system, where chatter is
identified by considering the audio spectrum of a cut, is presented in [28, 143–
145]. Due to lack of computational efficiency in these detection and control
algorithms the feed should stopped once chatter is detected. This implies that
at that moment chatter is fully grown and the workpiece already exhibits chat-
ter marks [145]. Next, the new spindle speed setpoint is determined such that it
equals the dominant chatter frequency in the audio spectrum. After setting the
new spindle speed setpoint, the feed is resumed and the process continues until
chatter no longer occurs. A similar approach is presented in [151]. Soliman and
Ismail [148] present the first experimental results where feed is not interrupted
during a spindle speed change. Once chatter is detected, the spindle speed is
ramped up until the detection variable, described in [79], becomes smaller than
the detection threshold. Ramping up the spindle speed does not ensure that
the nearest stable working point is found. Moreover, when an initial working
point is close to the maximum operating spindle speed no new spindle speed
may be found. Liang et al. [95] compare adaptation of feed, spindle speed and
a combination of spindle speed and feed using a fuzzy logic controller. Results
show that chatter cannot be suppressed by feed adjustment alone. In [43], new
spindle speed and feedrate setpoints are based on a heuristic search for stable
machining conditions.

Experimental results using the methods described above are only shown up
to a spindle speed of approximately 6000 rpm (so for relatively low spindle
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speeds). In [49], a computationally efficient method is developed that can be
used in the case of high-speed milling. All methods, discussed above, rely on
the fact that stable machining is guaranteed when a tooth passing frequency
equals the dominant chatter frequency. Setting a spindle speed harmonic equal
to the dominant chatter frequency in general implies that chatter vibrations
will be bounded but are not likely to be minimised. Therefore, important
improvements can be made by automatically searching for a spindle speed
setpoint that lowers the vibrations associated with chatter.

1.4.3 Alteration of spindle dynamics

Another way of addressing the chatter problem is to alter the dynamics of
the spindle-bearing, toolholder and tool system. This is a completely different
approach as compared to the chatter control methods discussed before. By
altering the dynamics of the spindle, the sld can be altered such that a higher
mrr becomes feasible. In this thesis, when referring to the spindle dynamics,
we mean to indicate the dynamics of spindle-toolholder system as well as the
tool dynamics. Basically, two methodologies are known in literature to alter the
spindle dynamics; namely, altering the spindle dynamics either in a passive or
an active manner. In the following sections, both approaches will be discussed.

1.4.3.1 Passive chatter control

In early studies on chatter prediction, it has been observed that machining
stability can be enhanced by increased damping of the whole system. Therefore,
passive vibration control techniques generally aim to increase damping. Several
kinds of dampers are used, such as Lanchester dampers [63], impact dampers
[41, 138], tuned mass dampers [128, 168, 176] or vibration absorbers [92, 97,
130, 141, 152]. As an example, in [92] a passive vibration control system using
a dynamic vibration absorber mounted on a cutting tool has been developed to
suppress vibrations in turning operations. The dynamic vibration absorber has
to satisfy two conditions: 1) the natural frequency of the dynamic vibration
absorber should be close to the natural frequency of the tool and 2) the dynamic
vibration absorber should have a larger damping ratio than the tool. Whereas
in most cases a single damper is used, Yang et al. [176] present an optimisation
strategy for multiple tuned mass dampers to maximise the minimum value of
the real part of the tooltip frequency response function, which is beneficial
for stability, see [157, 160]. In [86] and [182], the development of a so-called
multi-fingered centrifugal damper, which is inserted inside a hollow tool, is
discussed. As a result of centrifugal forces the flexible fingers press against the
inner surface of the hollow tool which constrains the bending of the tool.

Passive dampers are relatively cheap and easy to implement and do not re-
quire external energy. More importantly, passive control methods never desta-
bilise the system. However, drawbacks regarding the use of passive damping



1.4. Chatter control 9

techniques are the fact that the amount of damping which is practically achiev-
able is rather limited. Furthermore, vibration absorbers need accurate tuning
with respect to their natural frequencies and, consequently, lack robustness
with respect to changing machining conditions. Also, passive vibration control
methods find very limited application in milling as compared to turning opera-
tions. This is due to the nature of milling operations in which the cutting tools
rotate at high speed, whereas in turning operations the cutting tool is fixed.
Hence, in the latter case it is more convenient to add passive dampers to damp
tool vibrations.

An approach taken from a different perspective, which also could be con-
sidered as a passive chatter suppression technique, is presented by Maeda et al.
[101]. Herein, the configuration of a spindle is designed based on the specifica-
tion of the workpiece material and the tools used during cutting. An algorithm
determines the distribution of the bearings along the spindle such that the spin-
dle modes are altered in such a way that a peak in the stability lobes diagram is
located at a desired spindle speed. During each optimisation step the frequency
response function (frf) of the spindle tooltip dynamics is calculated using a
Timoshenko beam based finite element model. The obtained mass, damping
and stiffness matrices are integrated into the Altintas-Budak stability analysis
method [6] to determine the objective function value, i.e. the critical depth of
cut at the desired spindle speed. A major disadvantage of this approach is
that once the optimal hardware design is found and implemented, there is no
possibility anymore to alter the spindle dynamics. This could be a problem
when stability boundaries start to shift due to heat generation, tool wear, etc.
or when one would like to employ the machine at different spindle speeds.

1.4.3.2 Active chatter control

Chatter mitigation by active controller design is growing research field. Active
control of the spindle dynamics involves the design of a mechatronic system
which consists of an actuator/sensor system and a control law which calculates
the forces that should be applied to the spindle or tool. Active control of
chatter in machining processes has been proposed in different ways.

Firstly, different control laws are used. Examples are model-based control
procedures based on lqg and/or optimal control [22, 36, 37, 113, 140, 154],
H∞-norm based control [90, 103, 104] and µ-synthesis [21, 83–85, 87], and non-
model-based active damping procedures, see [124], based on positive position
feedback [180], acceleration feedback [122, 123] and velocity feedback [24, 57].

Secondly, several kinds of actuators are applied, such as active vibration
absorbers [58, 103, 113], active magnetic bearings [21, 83, 91], piezo-electric
actuators [30, 37, 119, 129, 180], Tefenol-D actuators [40, 118, 122, 123] and
electro-rheological fluids [137, 166, 167]. An extensive overview of the use of
active materials in machining processes can be found in [120].
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Early attempts in controlling chatter using active control methodologies are
performed by Comstock [26], Nachtigal [112] and Glaser and Nachtigal [59].
Comstock introduces an impedance control method to reduce tool vibrations
in single-point turning. In [59, 112] the effect of active damping on a boring
bar with hydraulic actuation is investigated.

The first experimental results of active chatter control for the milling pro-
cess are given in [37]. Herein, the theoretical results of [36] are demonstrated
on an experimental system, denoted as the smart spindle unit, which consists
of piezoelectric actuators where the tool-vibrations are measured using strain
gauges. A linear quadratic Gaussian (lqg) controller is used to alter machine
dynamics such that damping of the dominant tool mode is enhanced. Using a
model of the smart spindle unit, an active damping approach based on H∞-
norm based control is proposed in [90]. Results from time-domain simulations,
where the cutting forces acting at the tool are modelled as an external distur-
bance without taking the regenerative effect into account, illustrates that an
increase in the depth of cut is possible.

In [57], active damping control using velocity-feedback is applied to turning
operations and in [58] an extension to milling operations is proposed. Results
are illustrated using a hardware-in-the-loop simulator. Hereto, the cutting
forces are simulated using a mathematical model of the regenerative effect
and are interfaced to a beam which represents the structural dynamics of the
turning/milling machine.

A static and dynamic compensation of tool deflections is presented in [30].
A tripod which consists of three piezoelectric actuators is build around a spindle
unit. Static tool deflection is compensated based on a priori knowledge of the
tool’s and the spindle’s stiffness. Dynamic tool deflection is attenuated by
measuring the tool deflection with eddy current sensors. After identification of
this disturbance, a compensation signal is calculated, which is phase shifted by
180◦ and applied to the milling spindle by the piezoelectric actuators.

Ries et al. [129] introduce a commercial milling spindle with additional
piezoelectric actuators which induce forces at the outer ring of the front bearing.
Herewith, a controller is designed which increase damping which leads to an
increase of the critical depth of cut.

Another possibility is to use active magnetic bearings (amb) in milling
spindles as presented by Fittro and Knospe in [54, 55, 87, 88]. The dynamic
compliance at the tooltip of the spindle is minimised, using on µ-synthesis
techniques. Henceforth, the set of machining parameters, that is, spindle speed
and depth-of-cut, for which stable cutting holds is enlarged. A similar approach
is presented by Kern et al. [83], where active damping is applied for a milling
spindle equipped with an amb in addition to the ball bearings. A controller
for a single spindle speed is designed using µ-synthesis. The eigenfrequency
of the milling machine depends on the spindle speed and is modelled as an
uncertainty. This strategy is extended in [84], where controllers are designed
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for two different spindle speeds. To apply active damping in the entire spindle
speed range, gain-scheduling is applied for spindle speeds that differ from the
two design spindle speeds.

An approach taking a different perspective is presented in [180]. Herein, it
is assumed that chatter originates from workpiece flexibilities. Active damping
is applied by using piezoelectric actuators and sensors, which are mounted to
the thin-walled workpiece.

In some sense, all aforementioned active chatter control approaches aim
to attenuate chatter vibrations by applying damping to the spindle or the
tool in an active way. In general one can say that damping the machine or
workpiece dynamics, either passively or actively, results in a uniform increase of
the stability boundary for all spindle speeds. To enable more dedicated shaping
of the stability boundary (e.g. lifting the sld locally around a specific spindle
speed), the regenerative effect should be taken into account during chatter
controller design, which is one of the main points lacking in the aforementioned
control methodologies.

A first approach where the regenerative effect is included in the controller
design is presented in [140]. An optimal state feedback-observer controller com-
bination with integral control in the case of turning was designed while taking
the regenerative effect into account. The regenerative effect, modelled using a
delay term, is written as a rational function via Padé approximation. In [106],
the nonlinear continuous-time delay differential model describing the milling
process is converted to a discrete time representation. A high-order delay-free
model is obtained by adding delay states to the system description and com-
puting the system’s monodromy matrix. A controller is then determined based
on lqg techniques. Recently, Chen and Knospe [21] developed three differ-
ent chatter control strategies, based on µ-synthesis, for the case of turning:
speed-independent control, speed-specified control and speed-interval control.
The experimental setup consists of an amb on an actuator platform that is
connected to the tool platform via a leaf spring.

Although the experimental setup discussed in [21] exhibits some aspects en-
countered in high-speed milling, a comprehensive active chatter control strategy
tailored to the full complexity of the hsm process is missing to this date. More-
over, except for the work in [83, 84], all research on active chatter control is
limited to low spindle speeds (i.e. below 5000 rpm).

1.5 Goals and main contributions of the thesis

From the discussion in the previous sections, it becomes clear that chatter must
be avoided at all times. Based on the stability lobes diagram, a machinist is
able to select the optimal process parameters which should render a chatter-
free milling operation while ensuring a high mrr. In this work, two chatter
control approaches will be presented, which enable the increase or maintain
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of machining efficiency and/or increase the robustness of the milling process
against chatter. Below the main goals of the two control approaches will be
discussed in more detail.

Due to changes in temperature of the milling spindle, wear and tear of the
milling spindle and/or tool, the lobes in the sld may shift over time. Then it
may very well happen that an originally selected, chatter-free, working point,
chosen high in the lobe (with a high mrr, see point 2 in Figure 1.2), becomes
unstable. This should be prevented by detecting the occurrence of chatter while
it is a pre-mature stage (i.e. when no chatter marks are visible on the workpiece
yet) and adjusting the spindle speed and feed such that the process remains
stable. The first main goal of this thesis can be formulated as follows:

A chatter detection and control algorithm should be developed, which,
firstly, detects chatter in a premature phase, and, secondly, by auto-
matic adaptation of spindle speed and feed, guarantees a robust high-speed
milling operation despite changing process conditions, such as e.g. an in-
crease of temperature of the spindle or wear of the tool.

Based on the discussion above the first contributions of this work is given
as follows:

• Current chatter detection methods might work well for low spindle speeds
but they either utilise too much computational time to be able to detect
chatter before it has already developed towards the fully grown stage or
are not able to estimate the dominant chatter frequency. Therefore, in
this work, a novel chatter detection algorithm is presented, that detects
chatter when it is in a pre-mature stage, i.e. no chatter marks are visible
on the workpiece yet, and, moreover, gives an accurate estimate of the
dominant chatter frequency.

• Current chatter control techniques, which alter the process parameters to
prevent the occurrence of chatter due to changing process conditions (such
as temperature changes and wear of the spindle/tool), guarantee stable
machining by setting a tooth passing frequency equal to the dominant
chatter frequency. However, setting a spindle speed harmonic equal to
the dominant chatter frequency in general implies that chatter vibrations
will be bounded but are not likely to be minimised. Therefore, in this
work, a chatter control strategy is presented that automatically lowers
the cutter vibrations associated with chatter via real-time adaptation of
spindle speed and feed.

The continuously increasing demand for high-precision products at a high
productivity level, as seen in the present day manufacturing industry [114],
asks for the design of dedicated control strategies, which are able to actively
alter the chatter stability boundary and therewith enable high material removal
rates. The second main goal of this thesis can be formulated as follows:
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Figure 1.3: Stability lobes diagram with (light grey area) and without (dark
grey area) active chatter control.

An active control strategy should be developed which alters the stability
lobes diagram in a selective spindle speed range, and, therewith ensures
a priori chatter-free milling operations for a predefined domain of pro-
cess parameters (spindle speed and depth-of-cut) such that (chatter-free)
operating points of higher mrr become feasible.

To illustrate the demand for such lobe shaping, consider the sld for a given
spindle-toolholder-tool and workpiece material combination as given by the
dark grey area in Figure 1.3. Herein, next to the sld, isolines for a constant
mrr are given. The productivity for this typical spindle-toolholder-tool and
workpiece combination can be increased by designing an active chatter con-
troller, which alters the stability lobes such that the controlled sld is generated
as indicated by the light grey area in Figure 1.3. In that case, an initial oper-
ating point, point 1, can be shifted into the new stability lobe, i.e. point 2 in
Figure 1.3, which implies a larger mrr and machining productivity. Increasing
demands for improved surface quality and high-precision products also trig-
ger the desire for lobe shaping. In general, these demands can be fulfilled by
reducing the cutting forces, i.e. reducing the depth-of-cut ap or chip load fz.
Ideally, this is done without compromising on productivity. Hereto, consider
once again Figure 1.3, where it is assumed that the originally selected working
point 1 results in a bad surface quality. To improve the surface quality, without
reducing the mrr, a point along the isoline of the mrr for point 1, for a smaller
depth of cut, should be chosen, e.g. point 3 in Figure 1.3. However, without
altering the spindle dynamics this would not be possible. Along the same line
of reasoning, lobe shaping via active chatter control is motivated by limited
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spindle speed ranges in which tools operate properly and without excessive
wear [12]. Due to complex geometries or specific material properties, tools are
often limited to operate in a narrow spindle speed range which is favourable in
terms of tool life time.

Based on the discussion above, the following goals and main contributions
of this work regarding active chatter controller design can be formulated:

• A (model-based) active chatter controller methodology for the high-speed
milling process is presented, which can guarantee chatter-free cutting op-
erations in an a priori defined range of process parameters such as spindle
speed and depth of cut, where a model of the regenerative effect will be
taken into account during the controller design. From the discussion in
Section 1.4.3 it becomes clear that current chatter control strategies for
the milling process cannot provide such a strong guarantee of a priori
stability for a predefined range of working points. In general, the existing
techniques require a posteriori calculation of the set of stable working
points.

• For an active control approach, it is important to limit the amount of
actuator forces needed to stabilise the milling process. A comprehensive
analysis will illustrate the choice of the controller input signal that sig-
nificantly reduces the amount of actuator forces needed to stabilise the
milling process in the pre-defined domain of operating points. In addi-
tion, a bound on the actuator forces will be incorporated as a performance
criterion during the controller design.

• It is well known that the spindle dynamics vary due to heat generation
and gyroscopic effects in angular contact ball bearings. Therefore, during
controller synthesis robustness against changing process conditions (i.e.
modelling uncertainties) will be taken into account.

• The active control methodology will be based on robust-control design
techniques. Standard robust control techniques will result in relatively
high-order controllers, which may be undesirable from an implementa-
tion perspective. Therefore, additionally, in this work a fixed structure
active chatter control design procedure, while considering the infinite-
dimensional model of the milling process, is presented.

• A important aspect is the implementation of the active chatter control
strategy on an actual experimental setup, where more complex models
(and uncertainties) of the spindle dynamics need to be taken into account
during controller synthesis. In this work, controllers are tested on an
experimental setup where an amb is integrated in the spindle. Using the
designed controller, milling tests are performed and a proof of principle
of the active chatter control methodology is provided.
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Summarising, it can be said that, with the two chatter control strategies,
an increase in the robustness as well as efficiency of the milling process will be
realised.

1.6 Outline of the thesis

Chapter 2 discusses a comprehensive model of the milling process. The milling
process is introduced in detail in Section 2.2. The model describing the milling
process consists of three submodels. Firstly, a model of the tooth path is
presented in Section 2.3. Secondly, the cutting force model is presented in
Section 2.4. Finally, a model describing the spindle and actuator dynamics is
described in Section 2.5. Assembling the submodels, results in a total model
of the milling process discussed in Section 2.6. Moreover, a stability analysis
of the model will be discussed in Section 2.7, which can be used to construct
model-based stability lobes diagrams. Finally, a discussion on the frequencies
that appear in the vibration signals during chatter will be discussed in Section
2.8.

Chapter 3 presents the control strategy which automatically adjusts spindle
speed and feed by minimising the vibrations associated with chatter. Hereto,
Section 3.2 presents a novel detection algorithm, based on a parametric model
of the milling process, which is able to detect chatter when it is in a pre-
mature stage, i.e. when no chatter marks are visible on the workpiece yet,
and, moreover, gives an accurate estimate of the dominant chatter frequency.
The automatic spindle speed selection algorithm is presented in Section 3.3.
Experimental results using the detection and control strategy are discussed in
Section 3.4.

The active chatter control synthesis methodology, which enables dedicated
shaping of the sld in specific spindle speed ranges, is presented in Chapters 4,
5 and 6.

Section 4.2 presents the problem statement of the active chatter control
problem. Then, in Section 4.3 a comprehensive analysis is performed to se-
lect an appropriate feedback signal for the active chatter controller input, such
that the actuator forces are significantly reduced. The model of the milling
process as presented in Chapter 2 cannot be directly used in the robust con-
troller design procedure. Therefore, in Section 4.4 some model simplifications
will be discussed in order to construct a model suitable for controller design.
Section 4.5 present the robust control design procedure, based on a µ-synthesis
approach. Results of the proposed strategy, when applied to an illustrative ex-
ample using a relatively simple model for the spindle-toolholder-tool dynamics,
are presented in Section 4.6.

In Chapter 5, a fixed structure active chatter control design procedure for
the milling process without approximating the infinite-dimensional delay term
(as done in Chapter 4) is discussed. The fixed structure controller design is
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based on a µ-synthesis approach. Using this controller synthesis technique,
controllers of relatively low order when compared to the controllers obtained
using the methodology from Chapter 4 are designed, as described in Section
5.1. The algorithm for synthesising the controllers is presented in Section 5.2.
Results, using the algorithm for fixed structure controller design and a relatively
simple model for the spindle-toolholder-tool dynamics, are discussed in Section
5.3.

Experimental results, where the active chatter control strategy, as pro-
posed in Chapter 4, is tested for an actual high-speed milling spindle, which
is equipped with an amb, are presented in Chapter 6. The main goals of the
experiments are given in Section 6.1. The experimental setup is presented in
Section 6.2. Parameters of the cutting force model and a model of the spindle-
actuator dynamics will be determined experimentally and the resulting model
is discussed in Section 6.3. Controller design for the experimental setup is pre-
sented in Section 6.4. A closed-loop model-based stability analysis is performed
in Section 6.5. The results of milling tests with the controllers implemented on
the experimental setup are discussed in Section 6.6.

Finally, conclusions and recommendations for future research are presented
in Chapter 7.
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2.5 Spindle dynamics and actuator dynamics

2.6 Total milling model

2.7 Stability of the milling process

2.8 Chatter frequencies

2.1 Introduction

This chapter presents a comprehensive model of the milling process which can
be used to predict the occurrence of regenerative chatter. Moreover, the model
serves as a basis for the control design methodologies that will be presented
in the remainder of this work. Extensive overviews regarding modelling the
milling process for the prediction of regenerative chatter can be found in [5, 8,
49].

In Section 2.2, the basic structure of the milling process will be presented. In
the Sections 2.3, 2.4 and 2.5, the tooth path model, cutting model and model of
the spindle and actuator dynamics will be presented, respectively. Combining
the submodels gives the total milling model, which will be presented in Section
2.6. Stability properties of the model will be discussed in Section 2.7. Finally, a
discussion on the frequencies that appear in the vibration signals during chatter
will be discussed in Section 2.8.

2.2 The milling process

In the milling process, material is removed from the workpiece by a combina-
tion of rotation of a milling cutter and horizontal motion of this cutter in the
feed (x) direction into the workpiece. In Figure 2.1(a), a three-dimensional
schematic overview of the milling process can be found. Typical parameters
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Figure 2.1: Schematic representation of the milling process.
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Figure 2.2: Block diagram of the milling process.

that characterise the milling process, which are shown in the figure, are the
spindle speed n, the chip load fz, the axial depth of cut ap and the radial
depth of cut ae. Here, chip load refers to the thickness of the material which is
removed by one tooth of the milling cutter. Unlike in the turning process, in
the milling process the chip thickness is not constant, but a periodic function of
time. This is a result of the combination of the movement in the feed direction
and the rotating cutter.

In Figure 2.1(b), a schematic representation of the milling process is given,
where, for illustrative purposes, it is assumed that the dynamics of the milling
machine can be characterised by a single mode. In such a case, the spindle-
toolholder-tool combination is modelled as a 2-dof mass-spring-damper system
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in x- and y-direction with spring constants cx and cy and damping constants bx

and by, respectively. In general, however, the dynamics of the spindle dynamics
will be more complex. The tangential and radial forces on the tool are denoted
by Ftang and Frad, respectively. The angle that tooth j makes with the normal
y-direction is described by φj(t). A block diagram of the milling process, with
controller, is given in Figure 2.2. Below, each of the blocks in this figure will
be explained in more detail. As can be seen from the block diagram in Figure
2.2, the milling process is a closed-loop position-driven process (even without
the controller). The setpoint of the milling process is the predefined motion
of the tool with respect to the workpiece, given in terms of the static chip
thickness hj,stat(t). The static chip thickness is a result of a model of the
tooth path (and is generated by the nominal motion in feed direction and the
imposed rotation of the tool). However, the total chip thickness also depends
on the interaction between the cutter and the workpiece. Since in general
the machine tool is not infinitely stiff, the interaction between the cutter and
the workpiece leads to cutter vibrations resulting in a dynamic displacement

vt(t) =
[
vt,x(t) vt,y(t)

]T
of the tool which is superimposed on the predefined

tool motion. This results in a wavy surface on the workpiece. The next tooth
encounters the wavy surface left behind by the previous tooth and generates
its own waviness. This is called the regenerative effect and results in the block
Delay in Figure 2.2, see [108, 157]. The difference between the current and
previous wavy surface is denoted as the dynamic chip thickness

hj,dyn(t) =
[
sin φj(t) cos φj(t)

] (
vt(t) − vt(t − τ)

)
, (2.1)

defined in the radial direction where
[
sin φj(t) cos φj(t)

]
are the trigonometric

functions as given in the block diagram in Figure 2.2 and the delay τ given as

τ =
60

zn
. (2.2)

Herein, n is the spindle speed in revolutions per minute (rpm) and z the number
of teeth. Hence, the total chip thickness of tooth j, hj(t), is the sum of the static
and dynamic chip thickness: hj(t) = hj,stat(t) + hj,dyn(t) . In the next sections,
the components of the milling model, more specifically the tooth path model,
cutting force model and spindle and actuator dynamics, will be described in
more detail.

2.3 Tooth path model

The tooth path is the trajectory of a milling cutter tooth when it cuts through
the material. Traditionally, for the two-dimensional case, i.e. when the mill
is modelled in the plane of the machine bed, the tooth path is modelled as a
circular arc. However, the real tooth path is trochoidal. In [52], a model of
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the milling process is presented where the tooth path model is described using
a trochoidal path. Results in [52] illustrate that the effect of the trochoidal
tooth path model on the stability lobes diagram (sld) becomes relevant when
considering low immersion levels (i.e. the ratio ae/d, with d the diameter of
the cutter, is small). Since high-speed milling (hsm) is often applied for rough
machining, the focus in this work lies on full immersion cuts, where the full
width of the cutter is used for cutting (i.e. ae = d). Then it is sufficient to
model the tooth path using a circular tooth path and the static chip thickness
is given as, see [5]:

hj,stat(t) = fz sin φj(t) (2.3)

with fz the chip load in mm/tooth and φj(t) the rotation angle of the j-th
tooth of the tool with respect to the y (normal) axis (see Figure 2.1(b)).

2.4 Cutting force model

The cutting force model (indicated by the Cutting block in Figure 2.2) relates
the cutting forces acting at the tool tip of the machine spindle to the total chip
thickness. It is common to use an empirical model for the cutting force model.
In this work, it is assumed that the cutting tool is straight-fluted with zero
helix-angle. Consequently, it is sufficient to only consider cutting forces in feed
(x)- and normal (y)-direction [5]. The cutting forces in tangential and radial
direction for a single tooth j are described by the following exponential cutting
force model, see [150, 156]:

Ftang,j(t) = gj

(
φj(t)

)
Kt ap hj(t)

xF ,

Frad,j(t) = gj

(
φj(t)

)
Kr ap hj(t)

xF ,
(2.4)

where 0 < xF ≤ 1 and Kt, Kr > 0 are cutting parameters which depend on
the workpiece material and the cutter, and ap is the axial depth of cut. The
parameters are different for each workpiece material and tool combination. The
usage of an exponential dependency of the cutting force on the chip thickness
has the benefit that the stability lobes diagram will depend on the chip load fz

which is the case in practice. The cutting force only acts on the cutter when the
corresponding tooth is in cut. Hereto, the function gj

(
φj(t)

)
describes whether

a tooth is in or out of cut:

gj

(
φj(t)

)
=

{

1, φs ≤ φj(t) ≤ φe ∧ hj(t) > 0,

0, else,
(2.5)

where φs and φe are the entry and exit angle of the cut, respectively. Via
trigonometric functions, the cutting force can easily be converted to x(feed)-
and y(normal)-direction (see Figure 2.1(b)). Hence, cutting forces in x- and
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y-direction, Ft,x and Ft,y, respectively, can be obtained by summing over all z
teeth:

F t(t) = ap

z−1∑

j=0

gj

(
φj(t)

)
((

hj,stat(t)

+
[
sin φj(t) cosφj(t)

] (
vt(t) − vt(t − τ)

))xF

S(t)

[
Kt

Kr

])

,

(2.6)

where F t(t) =
[
Ft,x(t) Ft,y(t)

]T
and

S(t) =

[
− cosφj(t) − sinφj(t)
sin φj(t) − cosφj(t)

]

.

2.5 Spindle dynamics and actuator dynamics

The cutting forces interact with the spindle rotor and tool dynamics (block
Spindle in Figure 2.2). For the purpose of active chatter control, which will be
discussed in more detail in Chapters 4, 5 and 6, an actuator is implemented in
the spindle rotor. The controller output ic(t) is dictated to the actuator which,
in turn, generates a force F a(t) on the spindle.

In general, the spindle rotor, toolholder and tool dynamics (jointly called
the spindle dynamics) can be modelled by a linear multi-input-multi-output
(mimo) model. The model has four inputs and four outputs. The inputs

consist of the cutting forces F t(t) =
[
Ft,x(t) Ft,y(t)

]T
acting at the tool-tip

in x-/y-direction and the actuator forces F a(t) =
[
Fa,x(t) Fa,y(t)

]T
in x-/y-

direction induced at some point in the spindle, which generally differs from
the location at which the cutting forces are acting (the tooltip). This leads
to an inherent flexibility between the location of the actuator/sensor system
and the location at which cutting forces act. The outputs of the spindle rotor

dynamics model are the displacements vt(t) =
[
vt,x(t) vt,y(t)

]T
of the tooltip

and displacements va(t) =
[
va,x(t) va,y(t)

]T
measured at some position on the

spindle, the latter of which are used for feedback. The state-space equations
describing the rotor dynamic model (spindle, toolholder and tool dynamics)
are given as follows:

ẋ(t) = Ax(t) + BtF t(t) + BaF a(t),

vt(t) = Ctx(t), va(t) = Cax(t),
(2.7)

where x ∈ Rnx is the state vector (the order nx of this model primarily depends
on the order of the spindle-tool dynamics model), A ∈ Rnx×nx , Bt,Ba ∈ Rnx×2
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and Ct,Ca ∈ R2×nx . The state-space matrices describing the model of the
spindle dynamics can be either obtained using experimental data, after which
a parametric model is fit onto the data, or using a finite element approach
[3]. In this work, the model of the spindle dynamics will be based on the
experimental approach. In addition, the workpiece is considered rigid in this
work. However, workpiece flexibilities can be incorporated in the state-space
model in (2.7) describing the spindle dynamics.

Next to the spindle rotor, toolholder and tool dynamics, an actuator model
should be included. In this work, two different actuator models will be consid-
ered, namely

1. a linear actuator model, given by

F a(t) = Kaic(t) (2.8)

with controller output ic(t);

2. a model of an active magnetic bearing (amb).

The linear actuator model is considered as a generic class of actuator models for
which the active chatter control design procedure will be illustrated. Next to
the generic linear actuator model, the active chatter control design procedure
will also be developed for a model incorporating a specific actuator model
for an active magnetic bearing (amb). As described in Chapter 1 an amb

is a common type of actuator applied to rotor dynamic systems and in [83]
feasibility of using such actuator in the scope of high-speed milling has been
shown. This motivates to pay special attention to this kind of actuator (model).
The nonlinear model of an amb driven in differential mode is given as follows
[136]:

Fa,k(t) = kamb,k

(
(i0 + ic,k(t))2

(v0 − va,k(t))2
−

(i0 − ic,k(t))
2

(v0 + va,k(t))2

)

, k = x, y, (2.9)

where kamb,k are the specific amb coefficients, i0 is the so-called pre-magnetising
current (to compensate for gravity, etc.), v0 the corresponding nominal gap
displacement and ic,k(t) is the controller output (i.e. the input currents to the
actuator) and va,k(t) the bearing displacements. In general, the displacements
in the actuator journal va,k(t) are significantly smaller than the gap width v0.
In addition, the controller output ic(t) will be limited by the controller design
methodology. Then, for control design the nonlinear model of the amb may
be linearised about ic(t) = va(t) = 0, which has already been successfully
performed for many applications as is described in [136]. This results in the
following linear model of the amb:

F a(t) = Kiic(t) + Ksva(t), (2.10)
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where

Ki = diag
(
4kamb,x

i0
v2
0

, 4kamb,y
i0
v2
0

)
, (2.11)

Ks = diag
(
4kamb,x

i20
v3
0

, 4kamb,y
i20
v3
0

)
. (2.12)

Note that both the actuator models, that will be used for controller design,
are actually linear models. However, in the remainder of this thesis, the model
in (2.8) will be referred to as the linear actuator model, whereas the model
in (2.10) will be referred to as the amb model, as the model exhibits special
properties since it depends on the vibrations va(t) of the spindle rotor.

Combining the actuator model with the model describing the spindle, tool-
holder and tool dynamics in (2.7), gives the total model of the spindle-actuator
dynamics.

2.6 Total milling model

In the previous sections, the submodels for the static chip thickness, cutting
force and spindle rotor, toolholder, tool and actuator dynamics for the different
blocks representing the milling model as given in Figure 2.2 are introduced.
Substitution of the cutting force model, given in (2.6) into the model of the
spindle rotor, toolholder and tool dynamics, given in (2.7), yields the total
milling model:

ẋ(t) = Ax(t) + Btap

z−1∑

j=0

gj

(
φj(t)

)
((

hj,stat(t)+

[
sin φj(t) cosφj(t)

]
Ct

(
x(t) − x(t − τ)

))xF

S(t)

[
Kt

Kr

])

+ BaFa(t), va(t) = Cax(t).

(2.13)

In addition, the appropriate actuator model, i.e. either (2.8) or (2.10), should
be added to the total milling model (2.13). It can be seen that the model de-
scribing the milling process is set of nonlinear, time-dependent delay differential
equations (dde). In the next section, the stability properties of the model will
be analysed.

2.7 Stability of the milling process

In this section, the stability analysis exploited to determine chatter boundaries
in the stability lobes diagram is briefly addressed. In the milling process the
static chip thickness is periodic with period time τ . In general, the uncontrolled
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(i.e. F a(t) = 0) milling model (2.13) has a periodic solution x∗(t) with period
time τ [52]. To validate this fact let us assume the following decomposition of
x(t) can be made:

x(t) = x∗(t) + x̃(t), (2.14)

where x∗(t) is a τ -periodic motion that can be considered as the ideal motion
when no chatter occurs, and x̃(t) the perturbation term [77]. When no chatter
occurs, x̃(t) = 0 and the nominal tool motion is described by the following
ordinary differential equation (ode):

ẋ∗(t) = Ax∗(t) + Btap

z−1∑

j=0

gj

(
φj(t)

)
hj,stat(t)

xF S(t)

[
Kt

Kr

]

, (2.15)

which follows from (2.13) by exploiting the fact that x∗(t) = x∗(t−τ), ∀t, since
it is assumed that x∗(t) is τ -periodic. This is a linear system with a periodic
excitation with period time τ . Hence, when A has no eigenvalues at il2πftpe,
for ftpe := 1

τ and all l ∈ Z, the solution x∗(t) exists, is unique and is τ -periodic
[53]. Now the occurrence of chatter can be studied by investigating the stability
of the periodic solution x∗(t). More specifically, the periodic solution is (at least
locally) asymptotically stable when no chatter occurs and when chatter occurs
it is unstable. Hence, to study the chatter stability boundary, the uncontrolled
milling model is linearised about the periodic solution x∗(t) which yields the
following linearised dynamics in terms of the perturbations x̃(t):

˙̃x(t) = Ax̃(t) + apBt

z−1∑

j=0

Hj(t)Ct(x̃(t) − x̃(t − τ)), (2.16)

where

Hj(t) = gj

(
φj(t)

)
xF (fz sinφj(t))

xF−1S(t)

[
Kt

Kr

]
[
sinφj(t) cosφj(t)

]
. (2.17)

As can be seen from (2.16), (2.17), the linearised model is a delayed, period-
ically time-varying system. For a linear periodic dde, as in (2.16), stability
properties can be examined using extended Floquet theory for ddes [53, 64].
In general, a linear periodic dde has an infinite-dimensional state-space. For
an autonomous dde system this leads to an infinite number of characteristic
roots. For a periodic dde system the so-called characteristic multipliers (or
Floquet multipliers) µ, with µ = eλτ , with λ the characteristic exponent, are
determined. The number of Floquet multipliers is infinite. However, it can be
proved, see [53], that the number of Floquet multipliers is countable and the
Floquet multipliers are located in a compact subset of the complex plane and
have only one cluster point µ = 0. When all the Floquet multipliers have mag-
nitude smaller than one, i.e. |µ| < 1, the equilibrium point x̃(t) = 0 in (2.16)
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is (globally) asymptotically stable. Since stability of x∗(t) is studied using a
linearisation of (2.13) around x∗(t), this, in turn, implies that x∗(t) is a local
asymptotically stable solution of (2.13). If one or more Floquet multipliers lie
outside the unit disk, the equilibrium point x̃(t) = 0 in (2.16) is unstable. This
implies that the periodic solution x∗(t) is unstable and chatter will occur.

Based on the discussion above, it can be seen that stability of the milling
process is based on the calculation of the relevant characteristic multipliers µ.
Several approximation methods have been proposed in literature to determine
a finite number of characteristic multipliers [16, 35, 73, 75, 102]. In this work
stability is assessed using the semi-discretisation method of [75]. The main
point of semi-discretisation is that only the delay term is discretised, instead
of the actual time domain terms.

2.8 Chatter frequencies

In the final part of this chapter, briefly, the frequencies that are typically present
in the spectrum of the cutter vibrations vt(t), for the case with and without
chatter, are discussed. The same reasoning holds for the vibrations va(t) mea-
sured at the actuator location.

As discussed before, in the milling process, the static chip thickness hj,stat(t)
is periodic. The motion vt(t) of the cutter can therefore be described by a
periodic motion v∗t (t) = Ctx

∗(t), which is, in case of a concentric tool, periodic
with period time T = τ = 1

ftpe
= 60

zn . Here, ftpe denotes the tooth passing

frequency, z is the number of teeth on the cutter and n the spindle speed in
revolutions per minute (rpm). In practice, the axis of rotation does not coincide
with the geometric axis, and, consequently, the motion vt(t) is periodic with
the spindle speed T = 1

fsp
= 60

n [78], with fsp the spindle speed frequency. This

effect is called runout. Then the following frequencies appear in the vibration
signals when no chatter occurs [77]: for the case without runout,

• (multiples of) the tooth passing excitation frequency,

fTPE = lftpe, with l ∈ Z
+, (2.18)

and for the case with runout,

• (multiples of) the spindle speed frequency,

fSP = lfsp, with l ∈ Z
+, (2.19)

and, moreover, the damped natural frequencies of the spindle-toolholder and
tool dynamics.

As described above, when the periodic solution x∗(t) loses its stability (e.g.
with an increasing axial depth-of-cut), a set of Floquet multipliers cross the
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unit disk. Then three different cases can be distinguished, namely for |µ| =
1 ∧ Im(µ) 6= 0, µ = −1 and µ = 1. When |µ| = 1 ∧ Im(µ) 6= 0, a new periodic
motion with frequency fc is superimposed on the original periodic motion. In
the remainder of this work, fc is denoted as the basic chatter frequency. This
type of instability is denoted as a secondary Hopf bifurcation, and it is in most
cases responsible for the occurrence of chatter in milling. The basic chatter
frequency fc is related to the Floquet multipliers via

fc =
Im(ln(µ))

2πT
, (2.20)

where T = τ in case of no runout and T = zτ for the case with runout
[49, 77]. For a secondary Hopf bifurcation, the frequency of the new motion fc

is incommensurable to the frequency of the original solution (ftpe in case of no
runout or fsp in case of runout). Hence, this results in a quasi-periodic motion
of the tool. Consequently, in an unstable cut, the following chatter frequencies
fC occur additionally due to a secondary Hopf bifurcation [77]:

fC = ±fc + l
1

T
, with l = 0,±1,±2, . . . . (2.21)

When µ = −1, a so-called period doubling bifurcation occurs and the fre-
quency of the new motion is exactly half the frequency of the original motion.
Then, the following chatter frequencies due to a period doubling bifurcation
occur:

fC = (l + 1
2 )

1

T
, with l = 0,±1,±2, . . . . (2.22)

The final case is when µ = 1 and is denoted by period one chatter. For the
case without runout, period one chatter will never arise in the vibration signals,
see [78]. For the case with runout, the frequencies coincide with the harmonics
of the spindle speed frequencies. Consequently, the chatter frequencies due to
a period one bifurcation are given as

fC = lfsp, with l = 0,±1,±2, . . . . (2.23)

When chatter occurs, the energy of the vibration at the frequencies related
to fC significantly increases. Since the chatter frequencies represent a large
set of discrete frequencies, one of these frequencies will generally lie close to a
natural frequency of the spindle-toolholder and tool dynamics and will, conse-
quently, be dominant in the vibration signals. This frequency will be called the
dominant chatter frequency fchat in the remainder of this thesis. In practice,
basically three stages in the development of chatter can be identified. In the
first phase, no chatter is occurring. This implies that the frequency spectrum
of the vibration signals only consists of spindle speed related frequencies and no
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chatter marks are visible on the workpiece. In the second phase, the frequency
spectrum of the vibration signals consists of spindle speed related frequencies
and the dominant chatter frequency. However, no chatter marks are visible
on the workpiece yet. This phase is called onset of chatter. The third phase
is called full grown chatter. In this phase, the frequency spectrum consists of
spindle speed related frequencies and chatter frequencies fC . Moreover, chatter
marks are visible on the workpiece. At high spindle speeds full grown chatter
typically arises within a time span of approximately 100 ms.
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Chatter control by automatic

in-process spindle speed selection

3.1 Introduction

3.2 Chatter detection

3.3 Chatter control by spindle speed selection

3.4 Experiments

3.5 Discussion

3.1 Introduction

In machine shops, generally a working point (in terms of spindle speed n and
depth of cut ap) is chosen such that the milling operations remain stable for the
entire spindle speed range. This is illustrated in Figure 3.1. A working point
will generally be chosen below the line indicated by ap,critlow, resulting in e.g.
working point 1 in Figure 3.1. Improved modelling of the milling process, using
e.g. models as discussed in Chapter 2, results in a more accurate prediction of
the peaks in the stability lobes diagram (sld). As a consequence, a working
point in the peak of a lobe may be chosen (point 2 in Figure 3.1). In this
way the material removal rate (mrr) can be significantly increased. However,
due to temperature effects, wear and tear of the milling machine, the sld may
(slowly) vary/shift over time. As a result, an initially chosen working point
may become unstable. This is illustrated in Figure 3.1, where the working
point 2 becomes unstable due to shifting of the sld. This asks for a control
strategy that ensures robust stability of the process, despite the (slow) varying
nature of the sld, by e.g. automatically changing the spindle speed to point 3
in Figure 3.1.

As described in Chapter 1, there basically exist three methods to over-
come or avoid chatter. From these three methods, only two are applicable in
case of high-speed milling (hsm), namely spindle speed selection and active or
passive altering of the machine dynamics. In this chapter, a novel chatter con-
trol method based on spindle speed selection will be presented. By automatic

Parts of this chapter originally appeared in [31] and [32]
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Figure 3.1: Schematic representation of automatic spindle speed selection pro-
cedure. Working point 1 is considered a conservative choice. Due
to better modelling working point 2 may be chosen, which may
become unstable over time due to shifting of the stability lobes.
A spindle speed adaptation towards working point 3 ensures a ro-
bustly stable milling operation.

adaptation of spindle speed and feed a chatter-free high-speed milling opera-
tion, which is robust for changing process conditions (e.g. due to heating of the
spindle or tool wear, etc.), is guaranteed. An important part of this chatter
control strategy is the detection of (onset of) chatter. The model of the milling
process, as discussed in Chapter 2 cannot readily be employed for the spindle
speed selection control strategy (due to the fact that temperature effects etc,
are not included in the model). Therefore, a novel chatter detection algorithm
is presented that is able to track (slow) varying changes in the milling process
and automatically detects the onset of chatter in an online fashion and in a
pre-mature phase such that visible chatter marks on the workpiece are avoided.
Experiments on a state-of-the-art high-speed milling machine underline the ef-
fectiveness of the proposed detection and control strategies.

In Section 3.2, the novel detection algorithm is described. In Section 3.3,
the automatic chatter control strategy by means of automatic spindle speed
selection is described. Experimental results using the detection and the control
strategy are discussed in Section 3.4.

3.2 Chatter detection

In this section, the real-time chatter detection strategy will be presented. The
main objectives of the chatter detection are, firstly, to detect onset of chatter
in an early stage of its growth and, secondly, to identify the dominant chatter
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frequency fchat which is essential in the desired control strategy (see Section
3.3). Moreover, the chatter detection procedure must be able to track changing
(uncertain) process conditions, e.g. due to heating of the spindle or tool wear,
which are difficult to incorporate in the model as discussed in Chapter 2. This
asks for a parametric modelling approach of the milling process, which will
be presented Section 3.2.1. Based on the outcome of the detection method, a
control action (in this case adjusting spindle speed and feed) will be effected to
ensure that the process remains stable and full grown chatter is avoided. The
detection and control action must be performed in real-time due to the rapid
growth of chatter (typically within 100 ms) for high spindle speeds. Therefore,
existing chatter detection procedures, as e.g. discussed in [7, 110], which re-
quire the computation of the frequency spectrum of the vibrations and hence
are computationally inefficient, can therefore not applied in the case of high-
speed milling. Note, once more, that the goal of the detection strategy focuses
on the detection of onset of chatter and the corresponding chatter frequency,
rather than identifying the parameters of the milling process as presented in
the previous chapter.

In Section 3.2.2, the estimation of the parameters of the model will be
presented. The real-time implementation of the estimation of the parameters
is presented in Section 3.2.3. Finally, the procedure for detection of the onset
of chatter is discussed in Section 3.2.4.

3.2.1 Parametric modelling of the milling process

Clearly, the choice of an appropriate sensor is essential in a detection and con-
trol system. In [49] an experimental comparative study has been presented, us-
ing a wide range of sensors (accelerometer, dynamometer, eddy current sensors
and a microphone). Results show that the use of an accelerometer, mounted
near the lower bearing of a milling spindle is preferable from a detection per-
formance as well as cost effectiveness point of view. Therefore, here, one ac-
celerometer mounted near the lower bearing of a milling spindle will be used for
chatter detection. This section presents a parametric model of the milling pro-
cess, using the measured acceleration a(t), without the necessity constructing
a complete cutting process model as presented in Chapter 2.

As described in Chapter 2, the movement of the cutter vt(t) can be de-
composed into a periodic part v∗

t (t) and a perturbation part ṽt(t). The same
decomposition can be used for the acceleration a(t): a(t) = a∗(t) + ã(t). The
digital representation of the milling process can then be written as an output
error model [98], which is of the following form:

a(kTs) = G(q)u(kTs) + H(q)e(kTs). (3.1)

Herein the sequence a(kTs), k = 0, 1, . . . is the digital representation of the
continuous signal a(t) with sampling interval Ts, u(kTs) the input signal, e(kTs)
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Gaussian white noise with zero-mean and variance σ2, G(q) and H(q) are
rational minimum-phase transfer functions which are a function of the shift
operator q. In the remainder, the sampling interval Ts is omitted for notational
convenience, i.e a(k) := a(kTs). The signal model of the periodic component
a∗(k) can now be denoted as a∗(k) = G(q)u(k), and the signal model of the
perturbation part ã(k) can be denoted as ã(k) = H(q)e(k). A common model
structure for (3.1) is the Box-Jenkins (bj) model, see e.g. [98]. Its general
formulation is as follows:

a(k) =
B(q)

F (q)
u(k) +

C(q)

D(q)
e(k). (3.2)

Here, e(k) is again Gaussian white noise of zero-mean and variance σ2 and
u(k) is the input, due to the spindle speed related perturbation, which can
be composed by a discrete cosine/sine series, with the spindle speed as the
fundamental frequency, given by

u(k) =

nL∑

l=1

ul(k) =

nL∑

l=1

[
cos(lω(k)kTs)
sin(lω(k)kTs)

]

. (3.3)

Herein, ω(k) = 2πn(k)
60 , with n(k) the measured spindle speed in rpm and nL

the number of harmonics under consideration.

In the case of milling, the periodic movement of the cutter can be modelled
as an input-output relation between the spindle speed related perturbation u(k)
and a∗(k) without any dynamics, i.e. F (q) = 1 in (3.2). The reasoning behind
this is the fact that the spindle speed dependency of the model is not considered
as part of the regenerative effect (i.e. the spindle speed related vibrations do
not enter the feedback path of the milling process, as given in Figure 2.2). The
model of the periodic part can therefore be considered as a moving average (ma)
process. As described in Chapter 2, when chatter occurs, the frequency spec-
trum consists of spindle speed and chatter frequencies. The chatter frequencies
close to a machine spindle resonance will have a significantly larger amplitude
than the other chatter frequencies. Therefore, the signal model of the perturba-
tion part ã(k) can be considered as a so-called narrow-band signal of which the
frequency and amplitude may vary in time. Commonly, a narrow-band signal
can be modelled as an auto-regressive moving average (arma) process. Since
we are interested in the resonance (frequency and amplitude) of the model,
which can be modelled as a time-varying auto regressive (ar) signal model, we
take C(q) = 1 in (3.2). Taking the considerations stated above into account,
the total signal model can be given as

a(k) =

nL∑

l=1

Bl(q)ul(k) +
1

D(q)
e(k), (3.4)
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where Bl(q) is defined as,

Bl(q) =
[
Bl

cos, Bl
sin

]
(3.5)

and Bl
cos and Bl

sin are zero-th order transfer functions (i.e. do not depend on q).
The chatter vibrations (= regenerative effect) are modelled by D(q) since the
chatter-related vibration ã(k) = 1

D(q)e(k). Hence, it is expected that properties

of D(q) will predict the onset of chatter.

3.2.2 Identification of the parametric milling model

The rational transfer functions Bl(q), l = 1, 2, . . . , nL, and D(q) in (3.2) are
unknown and are to be determined with an estimation procedure. The un-
known coefficients of Bl(q) and D(q) are gathered in the parameter vector θ,
i.e. denote Bl(q) as Bl(q, θ) and D(q) as D(q, θ). The one-step ahead predictor
for the parametric milling model in (3.4) is given as

â(k, θ) = D(q, θ)

nL∑

l=1

Bl(q, θ)ul(k) + (1 − D(q, θ)) a(k). (3.6)

The prediction error is defined as the difference between the measured and the
predicted acceleration:

εm(k, θ) := a(k) − â(k, θ) = D(q, θ)ε(k, θ), (3.7)

with

ε(k, θ) := a(k) − â∗(k) = a(k) −

nL∑

l=1

Bl(q, θ)ul(k). (3.8)

Herein, the one-step ahead predictor from (3.6) is used. The two transfer func-
tions Bl(q, θ) and D(q, θ) can be estimated independently as will be shown
below. This is desirable, firstly, to reduce the complexities of the one-step-
ahead prediction and, secondly, from a computational point of view. Hereto,
the parameter vector θ is decomposed into two separate vectors, θp for the pe-

riodic transfer functions Bl(q, θp) and θu for the perturbation transfer function

D(q, θu), i.e. θ =
[
θT

p , θT
u

]T
.

The first prediction scheme estimates the periodic part of the accelerations:

â∗(k, θp) =

nL∑

l=1

Bl(q, θp)u
l(k), (3.9)

with cost function

Jp(θp) = E
[
ε2(k, θp)

]
, (3.10)
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where E [.] denotes the expectation operator. The second prediction scheme
estimates the perturbation part of the measured accelerations:

ˆ̃a(k, θu)= â(k, θ)−â∗(k, θp)=(1−D(q, θu))ε(k)=: ε̂(k, θu) (3.11)

with cost function

Ju(θp, θu) = E
[
(ε(k, θp) − ε̂(k, θu))2

]
. (3.12)

Note that Ju is a function of both θp and θu. However, below it will be shown
that the cost functions Ju and Jp can be minimised independently. Moreover,
Ju(θp, θu) = E

[
ε2

m(k, θ)
]
. Furthermore, note that by minimising Jp(θp) the

goal is to minimise E
[
ε2

]
which reflects the quality of the estimated a∗(k) of

the spindle speed related accelerations. Moreover, the minimisation of Ju, i.e.
of E[(ε(k, θp) − ε̂(k, θu))2] = E[εm(k)2] = E[(a(k) − â(k, θ))2], aims at good
prediction of the overall acceleration signal.

The two-step prediction scheme approach, outlined above, may only be
applied when the estimated signals â∗(k) and ˆ̃a(k) fulfill the property of or-
thogonality and have zero-mean. Hereto, consider the expected value of â∗(k)
and ˆ̃a(k) to be defined as follows

E

[[
â∗(k, θp)

1

]

ˆ̃a(k − β, θu)

]

=

[
σ2

puδ(β)
0

]

, (3.13)

with covariance σ2
pu, β the time shift operator and δ(β) = 1 for β = 0 and

δ(β) = 0 for β 6= 0. For the property of orthogonality to hold, in practice, it is
required that σ2

pu ≪ 1. To show that this is indeed the case, (3.9) and (3.11)
are substituted into (3.13) which gives

E

[[ ∑nL

l=1 Bl(q, θp)u
l(k)

1

]

ε̂(k−β, θu)

]

=

[
σ2

puδ(β)
0

]

. (3.14)

From the definition of the input vector ul(k) in (3.3) and â∗(k) in (3.9), it is
clear that the first prediction scheme estimates the periodic movement of the
cutter at specific (spindle speed related) frequencies. Moreover, in general, as
described in Section 2.8, the (dominant) chatter frequency, which largely deter-
mines ˆ̃a(k) = ε̂(k), differs from the spindle speed related frequencies. Then, as
is known from Fourier theory, sinusoidal signals with different frequency fulfill
the orthogonality property, i.e.

∫ π

−π
sin(mx) sin(nx)dx = πδmn for m 6= n, with

m, n ∈ Z, and δmn the Kronecker delta. Note that the condition of orthog-
onality may be violated in case period one chatter occurs. Then the chatter
frequency coincides with a spindle speed harmonic. For full immersion cuts,
which are considered in this work, the range of spindle speeds for which pe-
riod one chatter occurs is, especially in practice, very small. Hence, it can
be concluded that, in practice, σ2

pu ≪ 1 and a∗(k) and ã(k) can be estimated
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independently. When no chatter occurs, the estimation error ε(k) of the first
prediction scheme will, in theory, be equal to white noise. Then our assump-
tion that the perturbation signal ã(k) is a narrow-band signal, does not hold.
However, from the discussion in Section 2.8 and as will be shown in the ex-
perimental results in Section 3.4, in practice, the regenerative effect is already
visible during stable cutting. This implies that the (dominant) chatter fre-
quency will already be present in the perturbation signal ã(k). Therefore, in
practice, the assumption that the perturbation signal is a narrow-band-signal
still holds when no chatter occurs.
The problem now is to find parameter vectors θp, θu in (3.9) and (3.11) such

that the prediction error εm(k, θ) is minimised1). The optimally estimated
parameter vectors θo

p and θo
u are defined as,

θo
p = argminJp(θp), (3.15)

and

θo
u = argminJu(θo

p, θu). (3.16)

To solve the estimation problem, normally a set of measurement data is col-
lected. This data is then processed off-line, using e.g. a least square esti-
mator. This off-line approach cannot be used for the chatter control system
proposed for three reasons. Firstly, knowledge on the state of the system (i.e.
stable/unstable) is required at each time instant in order to detect chatter in an
online and real-time fashion. Secondly, from the estimation parameters θu the
chatter frequency will be estimated which is necessary for the control design
that will be presented in Section 3.3. Thirdly, the properties of the milling pro-
cess may vary during the milling operation. Moreover, during a control action
the spindle speed changes which results in a change of the milling process.
The next section describes the identification procedure that is able to deal with
the time-varying properties of the milling process and that can be implemented
in real-time.

3.2.3 Recursive identification of the parametric milling

model

Adaptive and recursive identification methods are designed to deal with time-
varying characteristics of dynamic processes (such as the milling process) and
can be implemented in real-time. To cope with the time-varying regenerative
process and to be able to track variations in the process properties, an adaptive
and recursive identification method is used to obtain parameter vectors θo

p and
θo

u such that the cost functions Jp(θp) and Ju(θp, θu) are minimised.

1)Note that the minimisation of ε2 in Jp(θ
p
) = E

[

ε2(k, θ
p
)
]

is only an intermediate step

in the estimation process.
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A major drawback of the use of recursive methods are the asymptotic prop-
erties of the estimation parameters. For fast changing time-variant systems,
these drawbacks have disturbing side-effects on the convergence time of an
algorithm. Moreover, the condition of orthogonality (3.14) may be violated,
resulting in biased estimation of Bl(q, θ) and D(q, θ). Therefore, it is crucial
to select an algorithm with excellent convergence and tracking properties.

The first prediction scheme is solved by application of the widely used nor-
malised least mean square (nlms) algorithm. The nlms algorithm is known
for its simplicity and ease of computation [66].

The nlms algorithm is given by

θp(k + 1) = ηθp(k) + 2α
ϕ

p
(k)ε(k)

‖ϕ
p
(k)‖2

, (3.17a)

ε(k) = a(k) − ϕ
p
(k)T θp(k), (3.17b)

ϕ
p
(k) =

[
u1(k)T , u2(k)T , . . . , unL(k)T

]T
, (3.17c)

θp(k) :=
[

B1T
, B2T

, . . . , BnL T
]T

(3.17d)

with θp(0) = 0, and where ul(k) as in (3.3) and Bl as defined by (3.5). The esti-

mated periodic part of the vibrations is then obtained via â∗(k) = ϕT
p
(k)θp(k).

Moreover, η is the so-called forgetting factor which enables exponential win-
dowing of the data. Without the forgetting factor, the algorithm is only able
to track slow-varying properties in the process. Typical values for η lie in the
range η ∈ [0.95, 0.9999]. The step size is denoted with α. The nlms algorithm
is convergent in the mean square if and only if 0 < α ≤ 2, see [66]. To prevent
overshoot of the optimal solution α is normally chosen as 0 < α ≤ 1. Further-
more, the term ‖ϕ

p
(k)‖2 will be constant when the spindle speed is constant,

due to the fact that ϕ
p
(k) consists of sine and cosine series with frequencies

related to the spindle speed. However, in practice the spindle speed is mea-
sured and will be changed during a control action. Therefore, ‖ϕ

p
(k)‖2 will not

be constant over the entire process and is computed recursively. A schematic
overview of the first prediction scheme is given in Figure 3.2(a).

The second prediction scheme can be written into a form that allows for
the application of the Kalman filter. The discrete-time state-space description
of the Kalman filter is defined as follows:

x(k + 1) = A(k)x(k) + e(k),

y(k) = C(k)x(k) + w(k)
(3.18)

with x(0) = 0, Σ0 = E[x(0)xT (0)] and e(k) and w(k) are assumed to be zero-
mean Gaussian white process and measurement noise processes, respectively,
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which are uncorrelated with covariances and cross-covariance defined by

E

[
e(k)
w(k)

]
[
eT (k), wT (k)

]
=

[
Re(k) 0

0T Rw(k)

]

. (3.19)

Furthermore it is assumed that the noise processes e(k), w(k) are uncorrelated
with the initial state vector x(0), i.e. E[e(k)xT (0)] = 0 and E[w(k)xT (0)] = 0T .
By taking A(k) = I, the state-space model of the Kalman filter is transformed
into a random-walk state model such that it models a nonstationary movement
of the state vector x, see [66, Chp. 6]. In this way, the variation of the chatter
frequency due to the slowly varying changes in the milling process (such as e.g.
temperature effects, etc.) is taken into account. Next, denote

ϕ
u
(k) := [ε(k − 1), ε(k − 2), . . . , ε(k − nd)]

T , (3.20)

where ε(k) is the error of the first prediction scheme (see (3.17)) which serves
as an input to the second prediction scheme. Then choose C(k) = −ϕT

u
(k),

y(k) = ˆ̃a(k) = ε̂(k), x(k) = θ̄u(k) with θ̄u(k) the true parameter vector, and
using the definition of ε̂(k) (see (3.11)) the state-space model (3.18) can be
written as follows

θ̄u(k + 1) = θ̄u(k) + e(k),

ε̂(k) = −ϕT
u
(k)θ̄u(k) + w(k),

(3.21)

with

θ̄u(k) = [d̄1, d̄2, . . . , d̄nd
]T , (3.22)

and nd denotes the order of D(q, θu) and d̄i, i = 1, 2, . . . , nd the true parameters
of the polynomial D(q, θu), i.e. D(q, θ̄u) = 1 + d̄1q

−1 + d̄2q
−2 + . . . + d̄nd

q−nd .
nd is typically set to 4 to be able to monitor two chatter frequencies. In this
way, chatter frequencies related to either a mode of the spindle dynamics or
a tool mode can be determined. It should be noted that, in the state-space
description above, the fact that D(q, θu) is a monic transfer function is used.

Based on the state-space model of the perturbation vibrations, discussed
above, the Kalman filter based on the one-step prediction, which estimates the
state vector θ̄u can be written as follows, [132]: Given observation ε(k) and
state-space model in (3.21) the identification process can be recursively solved
by repeating, for k > 0:

Tr(k) = Rw + ϕ
u
(k)Q(k − 1)ϕT

u
(k) (3.23a)

K(k) = −Q(k − 1)ϕ
u
(k)Tr(k)−1, (3.23b)

εm(k) = ε(k) + ϕT
u
(k)θu(k), (3.23c)

θu(k + 1) = θu(k) + K(k)εm(k), (3.23d)

Q(k) = Q(k − 1) + Re(k) − K(k)Tr(k)KT
r (k), (3.23e)
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(a) NLMS algorithm.
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Figure 3.2: Schematic overview of the recursive identification algorithms.

with residual covariance Tr ∈ R, Kalman gain K ∈ Rnd×1, the estimated
covariance matrix Q ∈ Rnd×nd and initial conditions θu(0) = 0 and Q(0) = Σ0.
The convergence rate and tracking properties of the estimation algorithm can
be tuned with the appropriate values for process covariance matrix Re and
observation covariance Rw. In this particular application, these parameters will
be kept constant during the identification procedure. A schematic overview of
the second prediction scheme is visualised in Figure 3.2(b). The values of the
tuneable parameters will in general differ for each milling machine.

Resuming, this section has presented two algorithms to sequentially esti-
mate the parameters of the parametric model (3.4) of the milling process. The
properties of the estimated chatter-related vibrations ˆ̃a(k) will be used to pre-
dict the occurrence of onset of chatter. The variables employed for chatter
detection will be presented in the next section.

3.2.4 Detection of onset of chatter

As discussed above, the properties of ˆ̃a(k) will predict the onset of chatter since
ˆ̃a(k) reflects the signal content of the measured acceleration signal related to
the chatter vibrations. Therefore, the detection of onset of chatter is now trans-
formed into the determination of the state of the time-varying auto-regressive
signal model ˆ̃a(k) = (1−D(q, θu))ε(k), i.e. the model of the perturbation part.
Hence, the detection criterion should indicate the time-varying strength of the
estimated perturbation signal ˆ̃a(k, θu).

In literature the following variables are often used in combination with a
threshold on the variable as a detection criterion for chatter in case of para-
metric modelling of the milling process, see e.g. [43]:

• the roots χ of D(q, θu);

• the peak value of the power spectral density (psd) function of ˆ̃a(k).

Here a third detection quantity is considered, namely:
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• the variance of the perturbation (chatter) part a(k) − â∗(k) of the mea-
sured acceleration a(k).

The first variable, i.e. the roots of the transfer function D(q, θu), directly rep-
resents stability of the model which represents the chatter-related vibrations
and can therefore be used as a detection variable. The latter two variables rep-
resent the energy of the chatter-related vibrations, estimated via ˆ̃a(k). When
the energy of the estimated chatter-related vibrations ˆ̃a(k) is small, no chatter
occurs, whereas when the energy increases above a certain threshold chatter is
likely to occur. Next the detection variables will be discussed in more detail.

The dominant root of D(q, θu) is defined as the root χ with the largest
absolute value denoted by χ̄. When |χ̄| will be come larger than 1, the model
D(q, θu) will be come unstable and chatter is to occur. The estimated dominant

chatter frequency, f̂chat, needed for control and for the second detection variable,
is determined from the dominant root χ̄ by,

f̂chat(k) = Im

(
ln(χ̄)

2π
fs

)

, (3.24)

where fs = 1
Ts

denotes the sampling frequency. However, when |χ̄| > 1, and
consequently chatter is to occur, the identification results of the milling model
will be biased. This results in an unreliable reconstruction of ˆ̃a(k). One way
to prevent this unstable identification process is to reflect the unstable roots
with the unit circle. The reflected distance to the unit circle can be defined
arbitrarily. Here, a distance of δf = 0.001 to the unit circle is chosen. This
implies that when the amplitude of a root becomes equal to 1 + δf the pole is
reflected with the unit disk, along the line between 0 and the pole, such that
the amplitude of the becomes equal to 1 − δf .

The peak value of the psd function of ˆ̃a(k) is located at the dominant chatter
frequency. The peak value of the psd function of ˆ̃a(k) can be calculated directly
by

Sˆ̃aˆ̃a(f̂chat(k), θu) =

∣
∣
∣
∣
∣

1

D(e−i2πf̂chat(k)Ts , θu)

∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣
∣
∣
∣

1

1 +
nd∑

l=1

dl(k)e−i2πf̂chat(k)lTs

∣
∣
∣
∣
∣
∣
∣
∣

2

.

(3.25)

The final variable for chatter detection considered is the variance of the
perturbation part of the measured acceleration (3.11). The estimation error
of the first prediction scheme contains all information about the non-spindle
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speed related frequencies, whereas the information in the estimated chatter
vibrations ˆ̃a(k) is limited due to the chosen order nd of D(q, θu). Therefore,
the variance is σ2 calculated from the estimation error ε(k) = a(k) − â∗(k) of
the first prediction scheme, i.e. σ2

ε = E
[
ε2(k)

]
. It is expected that the three

detection variables (dominant root χ̄ of D(q, θu), the psd value of ˆ̃a(k) at the

estimated dominant chatter frequency f̂chat and the variance of the perturbation
part σ2

ε = E
[
ε2(k)

]
) will perform differently for an unstable milling process,

but comparable for a stable milling process. The choice of which detection
variable and threshold to use will be based on experimental results with the
detection algorithm, which are presented in Section 3.4.

3.3 Chatter control by spindle speed selection

As described before, basically three methods exist to overcome or avoid chat-
ter, namely continuous spindle speed variation, passively or actively altering
the machine dynamics and adjusting the spindle speed. In this chapter, the
strategy to adjust the spindle speed and feed to avoid chatter is applied. The
following chapters of this thesis describe chatter control by actively altering
the machine dynamics. Chatter control by automatic spindle speed selection
can be implemented on a state-of-the-art high-speed milling machine without
any major changes to the machine, by using the feed override and spindle over-
ride functions of the machine. In this section, two methods are presented that
automatically adjust the spindle speed in case (the onset of) chatter occurs.
Hereto, the detection method of Section 3.2 is used. The detection method
gives both an indication that (the onset of) chatter occurs and an estimation
of the dominant chatter frequency, which is used for the purpose of control.
In Figure 3.3, a schematic representation of the closed loop including the milling
process, chatter detection and chatter control is depicted. An initial working
point (spindle speed and depth of cut) is chosen by the machinist based on
a model-based stability lobe diagram (sld), see Chapter 2, or practical ex-
perience. This working point is used in the nc program. During the milling
process, this spindle speed is maintained as long as (the onset of) chatter is
not detected using the detection method presented in Section 3.2. When (the
onset of) chatter is detected, a new spindle speed setpoint is computed and
sent to the hsm machine using the spindle speed override function to ensure
the avoidance of (fully grown) chatter. Simultaneously, the feed is adapted to
ensure a constant feed per tooth. The internal speed and feed controllers of the
hsm machine will be used to control the spindle speed and feed to its setpoint.

The detection method gives an indication whether or not (the onset of)
chatter occurs. Furthermore, the dominant chatter frequency fchat is computed.
This chatter frequency is used to compute a new spindle speed setpoint in
a chatter-free zone in the case (the onset of) chatter occurs. Hereto, also
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Figure 3.3: Schematic representation of the closed loop including the milling
process, chatter detection and chatter control.

the actual spindle speed should be known since it is needed in the detection
method and, as will be shown below, it is needed in the computation of the new
spindle speed setpoint. The new spindle speed setpoint can be chosen based
on two criteria, namely robustness against chatter and the minimisation of the
perturbation vibrations of the cutter. Here, robustness is referred to as the
selection of a spindle speed as far away from the stability boundary as possible
(for fixed depth of cut ap). The chatter controller as depicted in Figure 3.3
is basically a setpoint generator in closed loop with the hsm machine and the
detection algorithm. The internal speed controller of the hsm machine is used
to control the spindle speed to its setpoint. In Section 3.3.1, a control strategy
is presented that focuses on robustness against chatter whereas Section 3.3.2
presents a control strategy that minimises the perturbation vibrations of the
cutter and at the same time guarantees a robust milling performance.
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3.3.1 Control strategy 1

In the first control strategy, a new spindle speed is chosen such that the esti-
mated dominant chatter frequency f̂chat coincides with a (higher harmonic of)
the new tooth pass excitation frequency ftpe. The control strategy follows the
methodology as presented in [151]. This strategy is also successfully applied
for high spindle speeds and by changing the spindle speed in an online fashion
in [49].

The chatter frequency is related to the phase difference between two subse-
quent waves by, see [5]:

ǫ + p = fchat(k)
60

zn(k)
, (3.26)

with p the (integer) lobe-number, ǫ the fraction of incomplete waves between
two subsequent cuts and n(k) the measured current spindle speed in rpm. The
new spindle speed is computed such that ǫ = 0, see [151]. Hereto, first the new
lobe number is computed by

pnew(k) =

{

60f̂chat(k)

zn(k)

}

, (3.27)

where {.} means rounding towards the nearest integer and the estimated chatter

frequency f̂chat is provided by the detection method presented in Section 3.2.
The new spindle speed is then computed by

nnew(k) =
60f̂chat(k)

pnew(k)z
. (3.28)

Using this method, the spindle speed is directed towards the centre of the lobe,
see the schematic overview in Figure 3.1 as discussed in the introduction of
this chapter. This fact can be explained as follows. In the milling process the
highest depth of cut can be obtained (corresponding to a peak in the sld) when
the dynamic chip thickness hj,dyn(t) = vt(t) − vt(t − τ) is equal to zero. This
relation can be transformed to the frequency domain as follows

Hj,dyn(iω) = (1 − e−iωτ )Vt(iω) =: Q(iω)Vt(iω). (3.29)

Hence, the difference between the tooltip displacements of the present and
previous cut is actually characterised by a filter, denoted by Q(iω), with zeros
at lωτ = lω 1

ftpe
, l = 0, 1, 2, . . .. Then, by altering the spindle speed n, which

is directly related to delay τ via τ = 60
zn , i.e. τnew = pnew

f̂chat

leading to (3.28),

such that the tooth-passing frequency becomes equal to the dominant chatter
frequency and due to the filter properties of the Q(iω), this results in the
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dynamic chip thickness to be zero at the new spindle speed, which implies that
a peak in the sld exists in the sld at that spindle speed (see Chapter 2).

The exact centre of the lobe may not be exactly characterised by (3.28). As
mentioned in [49], if the initial working point is in the lower part of a lobe, the
new setpoint lies near the centre of the lobe. However, in the peak of the lobe
(i.e. for high depth of cut ap), nnew(k) as in (3.28) is generally not (exactly) at
the centre of the lobe and, consequently, it may happen that the new setpoint
may cross the next lobe.

When the spindle speed is changed, this will lead to a new chatter frequency
and, hence, the setpoint is changed accordingly. Therefore, the setpoint will
be updated constantly as long as the cut is being marked as exhibiting chatter.
When the cut is marked as not exhibiting chatter, the most recently computed
setpoint is maintained. Therefore, the spindle speed can still change although
chatter has already been eliminated.

3.3.2 Control strategy 2

The first control strategy, presented in the previous section, avoids chatter oc-
currence by setting the tooth-passing frequency equal to the chatter frequency
resulting in a zero phase difference ǫ between two subsequent teeth motions.
While this approach is robust for changes in the milling process, no guaran-
tees can be given for the performance in terms of the level of vibrations of the
process. Therefore, a second control strategy is proposed, where the goal is to
minimise the total perturbation vibrations ã(k) (which are deemed responsible
for chatter marks on the workpiece) and maintain robustness of performance
by adapting the spindle speed and feed. This strategy can be seen as an ex-
tremum seeking control strategy and generally no guarantees can be given on
whether a global minimum is found.

Essential in the development of this second control strategy is the existence
of a deterministic relation between perturbation vibrations and the spindle
speed. Moreover, knowledge on the relation between the perturbation vibra-
tions and parameters of the milling process parameters, such as spindle speed,
depth-of-cut, feed rate etc., is necessary to design a suitable controller. In
general no exact model can be found that analytically describes the relation
between perturbation vibration and parameters of the milling process. There-
fore, this relation is determined empirically. Hereto, milling experiments at
a Mikron 700 HSM are performed for several spindle speeds n at a constant
depth-of-cut of ap = 3.5 mm and feed per tooth fz = 0.2 mm/tooth. The
cut has been made in aluminium 6082 using a Jabro Tools JH421 cutter (2
flute cutter with a diameter of 10 mm and length of 57 mm) mounted in a
Kelch HSK40 shrink-fit holder. The acceleration is measured during the cut
using an accelerometer which is mounted near the lower spindle bearing. The
measured accelerations are processed off line using a Matlab/Simulink [107]
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Figure 3.4: Power spectral density Sˆ̃aˆ̃a(f̂chat(k), θu) (solid) and ∆f(k) (dashed)
based on measured accelerations for a spindle speed sweep from
29600 to 38600 rpm at a constant depth of cut.

implementation of the detection method presented in Section 3.2. Figure 3.4
presents the resulting relation of the perturbation vibration, in terms of the psd

Sˆ̃aˆ̃a(f̂chat(k), θu) of ˆ̃a(k) at the chatter frequency, which is presented in Section
3.2.4, as a function of the spindle speed for one specific depth of cut and feed
per tooth. In the same figure, the difference between the estimated dominant
chatter frequency f̂chat(k) and the coinciding higher harmonic of the tooth pass-
ing frequency, defined as pnew(k)ftpe, with pnew(k) as in (3.27). The difference

is denoted as ∆f(k) = pnew(k)ftpe − f̂chat(k). From Figure 3.4, it can be seen
that in the first control strategy, presented in the previous section, the point
where ∆f crosses the zero axis is calculated (in this case nnew = 32900 rpm).
Note that ∆f(k)60/(pnew(k)z) is actually the difference between original and
new spindle speed setpoint. For the second control strategy the minimum value
of the empirically obtained function should be found resulting in a new spindle
speed setpoint of nnew = 33600 rpm. Both spindle set points are positioned
relatively close to each other, which implies that lowering the perturbation
vibrations will also result in robust chatter prevention, since the resulting set-
point will also lie near the centre of a lobe. The minimum value of the objective
function, as given in Figure 3.4, will be determined via an extremum seeking
control like algorithm which will be described in the following section. Note
that one of the advantages of applying extremum seeking control, is the fact
that the objective function does not need to be known explicitly, since it will
be evaluated at each sample instant based on measurements.
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3.3.2.1 Control design

As outlined in the previous section, it is in general difficult to determine an ana-
lytical relation between the spindle speed and the perturbation vibrations. The
model of the milling process, as presented in Chapter 2, could be employed if
all disturbances in the milling process would be known and could be accurately
modelled, which is in general a harsh operation. Therefore, here an extremum
seeking type of controller is designed that will aim to minimise the estimated
perturbation vibrations of the mill by adapting the spindle speed. The con-
troller will, therefore, utilise a feedback control scheme to determine the optimal
spindle speed that coincides with the minimum value of Sˆ̃aˆ̃a(f̂chat(k), θu) de-

fined in (3.25). The feedback signal is therefore Sˆ̃aˆ̃a(f̂chat(k), θu). The inputs of

the controller are the initial spindle speed set point n0, the psd Sˆ̃aˆ̃a(f̂chat(k), θu)

of ˆ̃a(k) and the estimated dominant chatter frequency f̂chat(k). The controller
output is the new spindle speed setpoint nnew(k). The desired spindle speed is
calculated according to

nnew(k) = n0(1 + θc(k)), (3.30)

where nnew ∈ [nmin, nmax], θc ∈ R and n0 is the initial spindle speed, θc(k) is the
controller parameter and where nmin and nmax represent the minimum and max-
imum spindle speed of a milling machine. The control objective is to minimise
the predefined cost function Jc(θc), defined by Jc(θc) = minθc

Sˆ̃aˆ̃a(f̂chat(k), θu),
as function of θc. The dependency of objective function Jc on θc is intro-
duced by the definition of the new spindle speed in (3.30) and the fact that
the objective function Jc implicitly depends on the spindle speed as shown in
Figure 3.4. From Figure 3.4, it can be concluded that the selected cost func-
tion Jc(θc), as function of the spindle speed, has a (dominant) parabolic shape
with a minimum within one lobe. It is therefore reasonable to consider the
determination of the minimum value of the cost function with respect to θc(k)
as an identification problem and evidently the optimal value for the parameter
θc (and thus also for the spindle speed n), is defined as θo

c = arg minJc(θc). To
automatically obtain the optimal θo

c at which the cost function has a minimum
value, the well-known Normalised Least Means Square algorithm (nlms) [66]
is used. The properties of the nlms algorithm are already outlined in Section
3.2.3. The control algorithm is given by (3.30) with the following adaptation
law:

θc(k + 1) = θc(k) − 2αc

√

Sˆ̃aˆ̃a(f̂chat(k), θu)

ǫ0 + |υ(k)|
sign(∆f(k)), (3.31)

where ∆f(k) = pnew(k)ftpe(k) − f̂chat(k), ǫ0 = 1 · 10−12 to prevent for dividing
by zero in case of singularity in υ(k), with initial condition θc(0) = 0 and υ(k)
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Figure 3.5: Schematic overview of the adaptive chatter controller.

the exponential moving average of Sˆ̃aˆ̃a(f̂chat(k), θu) given by

υ(k)=(1−ηc)υ(k − 1)+ηcSˆ̃aˆ̃a(f̂chat(k), θu), (3.32)

with initial condition υ(0) = 0, ηc the smoothing factor, αc a tuneable parame-

ter that determines the step size, Sˆ̃aˆ̃a(f̂chat(k), θu) the time-varying psd of ˆ̃a(k)

at the chatter frequency f̂chat(k) (see (3.25)) and pnew(k) as defined in (3.27).
A schematic overview of the proposed controller is given in Figure 3.5.

3.3.3 Properties of the control strategies

For both control strategies, as presented in the previous sections, it is assumed
that the initial working point is stable. Due to (slowly) varying process con-
ditions, such as e.g. changing temperature in the milling spindle, the initial
working point may become unstable and a control action should be invoked.

The first control strategy outlined in Section 3.3.1 calculates a new spindle
set point and overrides the internal controller of the milling machine without
directly measuring the performance of the milling process. However, the status
of the process is indirectly obtained via the chatter detection procedure and
the spindle speed setpoint is updated as long as onset of chatter is occurring.
Since the spindle speed setpoint is explicitly based on the estimated chatter
frequency, an error in the parameters of the chatter detection error influences
the quality of this strategy. The new setpoint will introduce a step-wise change
in the setpoint for the hsm’s spindle speed controller and the performance
will therefore strongly depend on the internal spindle speed controllers of the
hsm and the dynamic behaviour of the closed-loop spindle system. Note that
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Table 3.1: Parameters of the identification algorithms given by Equations
(3.17) and (3.23).

α [-] η [-] Re [-] Rw [m2s−4]
0.5 0.9995 3 · 10−5I 8 · 10−4

the hsm milling machine has suitable internal controllers and an optimised
trajectory generator.

The main objective of the second control strategy outlined in section 3.3.2
is to lower the perturbation vibrations by finding the optimal spindle speed.
The adaptive proportional controller calculates iteratively the optimal spindle
speed trajectory using a feedback scheme. In fact the algorithm represents a
trajectory generator for the hsm’s spindle speed controller. The control param-
eters αc and ηc should be tuned such that the controller is insensitive for time
delay in the hsm’s control system. The parameter values have to be tuned dur-
ing the experiments. For time-varying delays in the machine’s control system,
the value of αc should chosen quite conservatively (i.e. αc < 1), which can lead
to deterioration in the settling time of the control action. In the second control
strategy, the new setpoint is implicitly based on the estimated parameters of
the chatter detection algorithm. This makes the second spindle speed selection
algorithm less sensitive to errors in the chatter detection process.

3.4 Experiments

Experiments have been performed to test the detection and control method
in practice. All experiments are performed on a Mikron HSM 700 milling
machine. The acceleration is measured at the non-rotating part of the spin-
dle near the lower spindle bearing using an accelerometer, type Brüel & Kjær
4382. The detection and control algorithms are implemented on a dSpace sys-
tem with a sample time of Ts = 1 · 10−4 s. The parameters of the recursive
identification algorithms, described in Section 3.2, determined for the exper-
iments are listed in Table 3.1. All cuts have been made in aluminium 6082
using a Jabro Tools JH421 cutter (2 flute cutter with a diameter of 10 mm
and length of 57 mm) mounted in a Kelch HSK40 shrink-fit holder. Firstly,
experiments are performed to validate the detection method experimentally
(Section 3.4.1). Secondly, experimental results for the two control strategies
are presented (Section 3.4.2).

3.4.1 Detection

Experiments have been performed to validate the detection method experimen-
tally. First, a detection criterion has to be selected, i.e. a detection variable in
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Figure 3.6: Experimental results of chatter detection method. Chatter is first
detected after 288 mm. The grey colouring in Figure 3.6(a) is
explained in the caption of Figure 3.7.

combination with a threshold. In Section 3.2.4, three possible detection vari-
ables were described, namely 1) variance of the estimation error ε in (3.8) of

the first prediction scheme σ2
ε(k), 2) Sˆ̃aˆ̃a(f̂chat(k), θu), the psd of ˆ̃a(k) at the

estimated dominant chatter frequency f̂chat(k) and 3) the absolute value of the
dominant root χ̄(k) of D(q, θu).

To validate the effectiveness of these detection variables, the experimental
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Figure 3.7: Power spectral densities for three parts of the measured acceleration
as indicated in grey in Figure 3.6(a).
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Figure 3.8: Spectrogram of the measured acceleration at the lower spindle bear-
ing. Brighter colours represent a larger magnitude of the frequency
component.

results obtained using these detection variables are compared to the surface of
the workpiece (by inspection of the workpiece surface, the occurrence of chatter
can be determined a posteriori).

A full immersion cut has been made at a spindle speed of 35000 rpm where
the axial depth of cut increases from 2.0 to 3.0 mm over a length of 600 mm,
which results in the occurrence of chatter during the cut. In Figure 3.6, the
acceleration measured at the lower spindle bearing and the three detection
variables are depicted. From Figure 3.6(b), it can be seen that the variance
σ2

ε(k) increases upon tool entering. The entering of a tool in the material can
be seen as an impulse excitation in the force acting on the tip of the mill.
This implies that next to spindle speed frequencies also other frequencies are
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present in the acceleration signal. These other frequencies are not predicted
by the first prediction scheme and therefore the estimation error of the first
prediction scheme ε(k) increases. After tool impact the variance decreases
again. At approximately 288 mm a significant increase is seen in the variance.
By inspection of the workpiece, see Figure 3.9, it can be seen that the first
chatter marks are visible around 293 mm. Hence, the increase in the detection
signal indicates the occurrence of the onset of chatter, as is expected. The
variance of the estimation error of the first prediction scheme does not decrease
and holds approximately the same value, which reflects the marks seen on the
workpiece surface, indicating the occurrence of (the onset of) chatter.

When considering the second detection variable, i.e. the psd function of ˆ̃a(k)

at the dominant chatter frequency denoted by Sˆ̃aˆ̃a(f̂chat(k), θu), no significant
increase in the detection signal is seen upon tool entering. This can be clarified
by realising that the detection signal is calculated at a single frequency, i.e.
the estimated dominant chatter frequency f̂chat(k). As with the first detection
variable, a significant increase in the detection signal is seen at approximately
288 mm indicating the onset of chatter as described above. However, after
this increase, a subsequent decrease in the detection signal occurs. This can be
explained as follows. By further increasing the depth of cut, the milling process
becomes unstable. This implies that the roots of the estimated perturbation
model will move further away from the unit circle resulting in a decrease of
Sˆ̃aˆ̃a(f̂chat(k), θu). So, after the detection signal crosses a user-defined threshold
and chatter is said to occur, the signal will become smaller than the threshold
and chatter is no longer detected. This is not in agreement with the marks on
the workpiece as can be seen in Figure 3.9.

The third detection variable, i.e. the absolute value of the dominant root
χ̄(k) of D(q, θu), |χ̄(k)| varies between zero and one. Before tool entering the
value of the detection variable lies close to one, indicating that the system is
close to instability. However, this is not the case, since the tool is not yet in
cut. When the rotating tool is not in cut, only spindle speed related frequencies
are present in the acceleration signal. These are filtered out by the first predic-
tion scheme. Therefore, the perturbation signal is a broad-band signal and the
assumption that the regenerative effect is a narrow-band signal does not hold.
Consequently, the estimation of the perturbation signal becomes unstable (but
bounded due to the fact that the poles are reflected along the unit disk, as
explained in Section 3.2.4). When the tool enters the material, a drop in the
detection signal, |χ̄(k)|, is seen. This can be explained by realising that in
practice the regenerative effect already is present in the measured acceleration
spectrum. Consequently, the spectrum of the perturbation signal contains one
or more frequencies not coinciding with a spindle speed harmonic. Then, the
assumption that the perturbation signal (modelled by ã(k)) is a narrow-banded
signal is valid and the identification process will be able to estimate the param-
eters of the perturbation model ˆ̃a(k). The fact that this is indeed the case is
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visualised in the spectrogram in Figure 3.8 where the Fourier transform of the
measured acceleration signal a(k) is given as a function of the cutting length.
It can be seen that already an extra frequency, i.e. a frequency that does not
coincide with a spindle speed related frequency, is present in the acceleration
signal just after tool impact, although this frequency contribution is very small
in amplitude. Hence, the perturbation signal ã(k) is a narrow-band signal and
the detection algorithm is able to estimate the perturbation motions. As in the
other two detection variables, at approximately 288 mm a (small) increase is
seen in the detection signal (see plot for χ̄(k) in Figure 3.6(b)). Although the
dominant root |χ̄(k)| shows an increase in amplitude during onset of chatter,
the signal is noisy and it would not be easy to determine a robust detection
threshold. When the depth of cut is further increased, the unstable poles of
D(q, θu) are reflected inside the unit circle, as described in Section 3.2.4, which
results in a decrease in the detection signal.

Based on the discussion above, the variance of the estimation error of the
first prediction scheme, σ2

ε(k) is taken as detection signal. Although multiple
variables can be combined into one detection quantity, the single variable (es-
timation error of the first prediction scheme) performed satisfactorily for all
experiments. By setting the detection threshold to σ2

ε,0 = 6.678 · 104 [m2s−4],
chatter is detected after cutting approximately 288 mm of material. For auto-
matic control it is desirable to select the threshold automatically. One way to
do so would, for example, be to select the threshold based on amplitude of the
first spindle speed harmonic. The automatic selection of algorithm parameters
is an extensive topic for further research and is therefore not considered here
in further detail.

Resuming, it can be said that all three detection variables perform well
in case of a stable milling operation and, moreover, during onset of chatter.
This justifies the application of the peak value of the psd of the estimated
perturbation vibrations ˆ̃a(k) at the chatter frequency and the roots of D(q, θu)
in the second control strategy that is presented in Section 3.3.2.

In Figure 3.7, the power spectral density of the measured acceleration is
given for the three stages of the development of chatter as described in Section
2.8. From Figure 3.7(a) it can be seen that when no chatter is occurring, the
dominant frequencies in the frequency spectrum of the measured acceleration
signal only consists of spindle speed related frequencies. When onset of chatter
occurs, which is detected by the chatter detection algorithm, the frequency
spectrum of the measured acceleration signal consists of spindle speed related
frequencies and the dominant chatter frequency, see Figure 3.7(b). In the case
of full grown chatter (Figure 3.7(c)), the frequency spectrum consists of spindle
speed related frequencies and chatter frequencies fC .

In Figure 3.8, a spectrogram of the acceleration signal is shown. The
spindle-speed and tooth-passing related frequencies can clearly be distinguished
from the spectrogram. Furthermore, when chatter is detected after 288 mm,
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Chatter detected First chatter marks

(a) from 280 to 320 mm. (b) from 340 to 375 mm.

Figure 3.9: Detail of the workpiece for a single cut without control at a spindle
speed of 35000 rpm with increasing depth of cut from 2.0 to 3.0
mm.

only the dominant chatter frequency is present in the frequency spectrum next
to the spindle-speed related frequencies. At approximately 360 mm chatter is
fully grown. It can be seen that at that moment all chatter frequencies are
present in the frequency spectrum.

In Figure 3.9, top views of the resulting workpiece are depicted. It can be
seen that at the moment chatter is detected no clear chatter marks are visible
on the workpiece. The first (small) chatter marks appear at 293 mm. From
Figure 3.9(b), it can be seen that chatter is fully grown at 352 mm. Hence,
it can be concluded that the results of the detection method in Figure 3.6
coincide very well with the path that is left behind by the cutter. Furthermore,
it can be seen that chatter is detected in a very early stage (even before chatter
marks are visible on the workpiece). Consequently, once the onset of chatter is
detected there is still time to control the spindle speed away from the chatter
instabilities.

3.4.2 Control

In order to apply the control strategies presented in Section 3.3, the hand
terminal of the Mikron HSM 700 is modified such that the feed override and
spindle speed override can be controlled using an external electric potential.
This means that the spindle speed can be changed within an interval ranging
from 50% to 120% of the initial spindle speed n0 and the feed can be modified
within an interval ranging from 0% to 100% of the initial feed. Hence, using
this particular setup, it is not possible to increase the spindle speed while main-
taining a constant chip load. Therefore, when the spindle speed in increased,
the chip load decreases with maximally 20%. Since the initial chip load is set to
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0.2 mm/tooth, the minimal chip load is 0.16 mm/tooth, which is still sufficient
for cutting aluminium. One major disadvantage of using the override as con-
trol input is the possibly large time-delay between control input and actuation
moment, due to a generally lower priority that is assigned to override control
in the hsm’s control system. For this typical milling machine it is determined
that the delay varies between 40 − 70 ms. The presence of such delay may
adversely affect the control performance.

In Figure 3.10, the results are depicted for a full immersion cut where the
depth of cut is increased from 2.0 to 3.0 mm with an initial spindle speed of
35000 rpm. The total path length is 600 mm which is cut in about 2.6 s.
In this way, the process is forced into an unstable region. This can be seen
as a worst-case scenario, since the goal of the control strategy is to ensure
chatter-free milling for, relatively low-frequent, time-varying changes of the
stability lobes diagram. The same cut is repeated two times. The first cut is
performed using controller strategy 1 (Section 3.3.1) whereas the second cut is
made using control strategy 2 (Section 3.3.2). The parameters for the second
control strategy are chosen as αc = 0.7 and ηc = 0.3.

In the Figures 3.10(a) and 3.10(b), the measured acceleration is depicted

together with the sign of ∆f(k) = pnew(k)ftpe(k) − f̂chat(k), which indicates
the direction in which the spindle speed should be changed. The variance σ2

ε

of ε(k) (i.e. the detection signal) is depicted in Figures 3.10(c) and 3.10(d). As
can be seen, chatter is detected just before a major increase of the acceleration
is observed (compare Figures 3.10(c) and 3.10(d) with 3.10(a) and 3.10(b)).
This implies that chatter is detected during its onset and before the workpiece
is damaged as is already shown in Section 3.4.1. The spindle speed and the
spindle speed setpoint provided by the controllers are shown in Figures 3.10(e)
and 3.10(f). When the variance σ2

ε exceeds the threshold, the cut is marked
as exhibiting chatter. As described in the previous section, an increase in the
detection signal σ2

ε(k) is seen when the tool enters the material. However,
the response due to tool entering is damped out relatively fast and therefore
no control action is induced. When chatter is detected, a new setpoint for
the spindle speed is computed and sent to the spindle speed override function
of the hand terminal. In this particular case, a decrease in spindle speed is
desired. It can be seen that the setpoint of the first control strategy overshoots
the eventual setpoint. This is due to, firstly, delay in the control system and,
secondly, the fact that the chatter frequency differs at different spindle speed.
In order to prevent high-frequent oscillation of the setpoint, due to changes in
sign(∆f(k)), a low-pass filter is added to the estimated chatter frequency.

After the setpoint is reached, for both control strategies, the cut remains
stable even when the depth of cut is increased further. It can be observed that
it takes some time for the spindle speed to reach the setpoint. The settling
time of the closed-loop spindle system is due to: 1) delay in the controller of
the Mikron HSM700 (typically between 40 and 70 ms) and 2) the large inertia
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Figure 3.10: Experimental results of the control strategies for a cut at
35000 rpm with increasing ap from 2.0 to 3.0 mm in 2.6 s. Left
figures: control strategy 1; right figures: control strategy 2.

of the spindle in combination with the standard spindle-speed controller of
the Mikron HSM700 which is not specifically tuned for tracking relatively fast
changes in spindle-speed. The setpoint that is computed by control strategy
1 varies rapidly as is depicted in Figures 3.10(e). In order to decrease the
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variation of the setpoint, the cut-off frequency of the low-pass filter can be
lowered. However, the actual spindle speed does not have these large variations
due to the relatively low bandwidth of the closed-loop spindle system. The
spindle speed is adjusted smoothly towards the chatter-free area. However, a
mismatch between the setpoint and actual spindle speed for the second control
strategy is seen. This is probably due to lack of integral control of the internal
spindle speed controller of the milling machine.

As can be seen in Figure 3.10(a), the amplitude of the acceleration at the
end of the cut is about 200 m/s2 in case control strategy 1 is chosen. For the
case where the control strategy 2 is switched on, the amplitude of the acceler-
ation is about 145 m/s2 (see Figure 3.10(b)). When the controller is switched
off the acceleration signal is very noisy with spikes up to 260 m/s2 (see Figure
3.6). Therefore, using the controller, the acceleration at the spindle bearing is
decreased and is even further decreased when control strategy 2 is used (com-
pare Figure 3.10(a) and 3.10(b)). Although, the amplitude of the accelerations
with and without control do not differ that much, the frequency spectrum is
totally different. This can be seen from Figure 3.11, where the measured ac-
celeration signal, for each control strategy, is shown in a spectrogram. In case
the controller is switched off, the frequency spectrum consists of spindle speed
related frequencies and chatter frequencies, see Figure 3.8. However, it can
clearly be seen that no chatter frequencies are visible in the frequency spec-
trum of the acceleration in case the controllers are switched on. Note that
the dominant chatter frequency is visible during the spindle speed transition.
This is mainly due to the delay in the internal spindle speed controllers of the
milling machine. However, the dominant chatter frequency disappears from the
acceleration spectrum before full grown chatter is to occur. By using control
strategy 1, the second harmonic of the new tooth passing frequency ftpe is set
to the dominant chatter frequency (which is clearly visible in Figure 3.11(a)).
From the spectrogram of the measured acceleration for the second control strat-
egy (Figure 3.11(b)) it can be seen that (a higher harmonic of) tooth passing
frequency does not coincide with the dominant chatter frequency.

In Figure 3.12, the results, for the case where the controllers are switched
on, are shown in the spindle-speed/depth-of-cut parameter space. Here, the
cut moves from a low to a higher value for the depth of cut. It can be seen
that for both control strategies the controller ensures that the working point
moves away from instability and ensures a stable cut.

Pictures of a detail of the workpiece are shown in Figure 3.13. For sake of
clarity also a picture of a cut with the controller switched off is shown. Clearly,
when the controller is switched off, the wall of the workpiece is nonsmooth,
whereas the wall of the workpiece remains smooth when the controller has
been switched on. When the controller is switched on, no chatter marks can
be seen on the workpiece after the setpoint has been reached. Some (small)
chatter marks appears on the workpiece. As described before, this is due to the
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(b) Control strategy 2.

Figure 3.11: Spectrogram of the acceleration measured at the lower spindle
bearing for both control strategies.

relatively large time-delay present in the control system of the milling machine.
Furthermore, the spindle speed is changed in an online fashion, while the milling
continues (i.e. the feed remains nonzero). If the feed would have been stopped,
this would have led to a significant increase of production time.

Hence, it can be concluded that the proposed control strategies work in
practice. The control strategies ensure stable working points while the feed re-
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Figure 3.13: Detail of the workpiece with and without chatter control. The
depth of cut is increasing from 2.0 to 3.0 mm and the spindle
speed is 35000 rpm.

mains nonzero. Moreover, the detection and control algorithms are fast enough
to be used at high spindle speeds.

3.5 Discussion

In this chapter, two control strategies are presented that guarantee chatter-free
high-speed milling operations by automatic adaptation of spindle speed and
feed (i.e. the feed is not stopped during the spindle speed transition). In this
way, the high-speed milling process will remain stable despite possible changes
in the process, e.g. due to heating of the spindle, tool wear, etc. The first control
strategy eliminates chatter by setting the tooth passing frequency equal to the
dominant chatter frequency. The goal of the second chatter control strategy
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is to minimise the total chatter vibrations by spindle speed adaptation. For
both control strategies an accurate and robust chatter detection algorithm is
required. Therefore, this chapter presents a novel chatter detection algorithm
that automatically detects chatter in an online fashion and in a pre-mature
stage, such that no chatter marks are visible on the workpiece yet when it
is detected. Experimental results show that by using the control strategies
chatter-free machining is ensured. It is shown that the detection algorithm
is indeed able to detect chatter before it is fully developed. Furthermore,
both control strategies ensure that chatter is avoided, thereby ensuring robust
machining and a high surface quality. Furthermore, where the first control
strategy only ensures the avoidance of chatter, the second control strategy also
minimises the chatter vibrations.

To improve the results even further, firstly, the control action should be in-
troduced directly to the internal spindle speed controller of the hsm, instead of
via the hand terminal, such that the delay in the controller is minimised. Sec-
ondly, the internal spindle speed controller of the hsm should be tuned properly,
to be able to improve the tracking of the desired spindle speed setpoints.

Moreover, the tuning of the presented detection and control strategy is
machine specific. To even further enhance practical applicability (for entire
machine parks), it is foreseen that automatic tuning, e.g. exploiting recent work
on identification methods based on recursive lattice predictors as presented in
[39], will be beneficial.

Finally, while in this chapter the chatter detection procedure is used for
chatter control purposes, the strategy can also be used for the efficient, in-
process experimental determination of stability lobes diagrams. In this way, the
effect of modelling inaccuracies in the milling model on model-based stability
lobes diagrams can be overcome.
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4.1 Introduction

As described in the Chapter 1, it is preferable to be able to shape the sta-
bility lobes diagram (sld) such that the efficiency (i.e. the material removal
rate (mrr)) of the milling process can be increased, while ensuring chatter-
free milling operations. In this chapter, an active chatter controller design
methodology for the high-speed milling process is presented, which can guar-
antee chatter-free cutting operations in an a priori defined range of process pa-
rameters such as spindle speed and depth of cut. The methodology developed
in this chapter is based on a robust control approach using µ-synthesis. Hereto,
the most important process parameters (depth of cut and spindle speed) are
treated as uncertainties. Next to uncertainties in the process parameters, an
additional uncertainty in the spindle dynamics will be taken into account in
the controller design. In this way, for example, the effect of changing bearing
stiffness as function of the the spindle speed, which typically seen in milling
spindles [1, 50], can be taken into account.

In Figure 4.1, a schematic overview of the active chatter control procedure
approach can be found. The dashed box, given in the figure, indicates the area
of working points which should be stabilised by a controller (i.e. the working
points that should result in chatter-free milling operations). The controller

The work presented in this chapter is partly discussed in [33] and [34]
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should then be designed such that it alters the sld such that the area of desired
working points becomes stable. The newly obtained sld is given by the light
grey area.

Note that the control goal in this chapter is entirely different from the one
in Chapter 3. In Chapter 3, the goal was to make the milling process robust (in
the sense of avoiding chatter) for changing process conditions by automatically
detecting chatter and adapting spindle speed and feed. However, the control
strategy proposed in Chapter 3 is unable to alter the sld and hence did not
attain an increase in milling efficiency. As outlined above, the goal of the control
strategy in this chapter is exactly the adaptation of the sld by feedback in order
to make working points of higher mrr feasible while avoiding chatter.

The chapter is organised as follows. Section 4.2 presents the problem state-
ment of the active chatter control problem. Then, Section 4.3 describes the
selection of an appropriate feedback signal for control. The nonlinear, time-
varying dde model of the milling process as presented in Chapter 2 cannot be
directly used in the robust controller design procedure. Therefore, in Section
4.4 some model simplifications will be discussed in order to construct a model
suitable for controller design using µ-synthesis techniques. Section 4.5 presents
the robust control design procedure. Results of the proposed strategy, when
applied to illustrative examples, are presented in Section 4.6. In the examples,
for illustrative purposes, relatively simple models of the spindle-toolholder-tool
and actuator dynamics will be considered. In Chapter 6, controllers will be
designed considering the full complexity of an experimental setup. Note that,
as opposed to the discussion in the previous chapter, the spindle dynamics is
considered as time-invariant throughout the remainder of this thesis. Finally,
a discussion of the presented results will be given in Section 4.7.

4.2 Problem statement

Consider the nonlinear time-varying delay differential equations (dde) describ-
ing the dynamics of the milling process, as presented in Equation (2.13) in
Chapter 2, given as follows:

ẋ(t) = Ax(t) + Btap

z−1∑

j=0

gj

(
φj(t)

)
((

hj,stat(t)+

[
sin φj(t) cosφj(t)

]
Ct

(
x(t) − x(t − τ)

))xF

S(t)

[
Kt

Kr

])

+ BaF a(t), va(t) = Cax(t),

(4.1)

with F a(t) the forces generated by the actuator that are acting at the spindle
and va(t) the displacements measured at some position on the spindle, which
are available for feedback, see also Figure 4.2. Recall that, as described in
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Figure 4.1: Schematic representation of the active chatter control procedure.
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Figure 4.2: Schematic overview of spindle dynamics and block diagram of the
closed-loop milling process.

Chapter 2, the stability lobes diagram (sld) is determined using the model
which describes the perturbation vibrations about the periodic solution of the
milling process. Therefore, the controller design, as presented in this chapter,
will be based on the model which is linearised about the periodic solution
with uncertainties in depth of cut ap and spindle speed n which results in
an uncertainty in the delay τ . Moreover, chatter is defined as the loss of
stability of this periodic solution and stability of the milling process is based
on the stability of the model describing the perturbations of the milling process
around the periodic solution. Using the decomposition x(t) = x∗(t)+x̃(t), with
the periodic solution x∗(t) and the perturbation x̃(t), the linearised uncertain
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model of the milling process can then be given as follows:

˙̃x(t) = Ax̃(t) + apBt

z−1∑

j=0

Hj(t)Ct(x̃(t) − x̃(t − τ)) + BaF̃a(t),

ṽa(t) = Cax̃(t),

(4.2)

with uncertainty sets ap ∈ [0, āp] and τ ∈ [τ , τ̄ ] and Hj(t) as given by (2.17).
Herein, similar to the decomposition of the state vector, the following decompo-
sition of the vector of actuator forces is used; F a(t) = F ∗

a(t)+F̃ a(t). More detail
about the decomposition of the actuator forces will be discussed in Section 4.3.
The aim of this chapter is to design a finite-dimensional linear controller K,
which guarantees:

• robust stability of the milling process (4.2) for the given uncertainties in
depth of cut ap, time delay τ , and possible uncertainty in the spindle
dynamics;

• performance by minimising the total amount of actuator energy needed
to stabilise the uncertain milling process.

The controller design will be employed for both the linear actuator model as
well as the amb actuator model which relates the current commands ic(t),
generated by the controller, to forces F a(t) acting at the spindle, as presented
in Section 2.5. As described in Chapter 1, an amb is a common type of actuator
applied to rotor dynamic systems and in [83] feasibility of using such actuator in
the scope of high-speed milling has been shown. This motivates to pay special
attention to this kind of actuator (model).

Hereby, it is assumed that the controller K, with controller input y(t) ∈ R2

and output current ic ∈ R2, has the following state-space description,

ξ̇(t) = Acξ(t) + Bcy(t),

ic(t) = Ccξ(t) + Dcy(t).
(4.3)

Herein, ξ ∈ Rnc , Ac ∈ Rnc×nc , Bc ∈ Rnc×2, Cc ∈ R2×nc and Dc ∈ R2×2 with
nc the order of the controller. The choice of the controller input signal y(t)
will be discussed in Section 4.3. The linearised uncertain model of the milling
process, given by (4.2), cannot be directly used in the standard robust controller
design procedure. Therefore, after discussing the selection of the controller
input signal y(t), two model simplifications will be presented in Section 4.4
such that the infinite-dimensional time-varying model (4.2) is transformed into
a finite-dimensional linear time-invariant (lti) model. In this way, the model
can be used in a robust control design procedure, which will be presented in
Section 4.5.
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4.3 Controller input signal

An important part of any control system is the choice of the feedback signal
used for control.

From the discussion in Section 2.7 it becomes clear that the nominal solution
of the milling model is periodic with period time τ . Moreover, chatter is defined
as the loss of stability of this periodic solution and stability of the milling
process is based on the stability of the model describing the perturbations of
the milling process around the periodic solution. Then, two possibilities arise
in selecting the feedback signal which serves as an input to the controller K,
namely:

1. full output feedback, i.e. the total (measured) displacements va(t) are
used for feedback;

2. perturbation feedback, i.e. the perturbation (chatter) vibrations ṽa(t) =
va(t) − Cax∗(t) are used as feedback signal, where x∗(t) denotes the
periodic solution of the nominal model given by (4.1).

In Section 4.5, the design of a linear dynamic output feedback control law
characterised by the transfer function K(s) and with a state-space description
as defined in (4.3), is pursued. Next, the controller input signal y(t) will be
denoted as

y(t) = va(t) − cv∗a(t) (4.4)

where v∗

a(t) = Cax∗(t) is the periodic solution at the measured output. More-
over, c is a constant indicating whether full output (c = 0) or perturbation
feedback (c = 1) is applied.

The implication of the choice for either one of the two controller input sig-
nals will be demonstrated next for the actuator models as presented in Section
2.5.

4.3.1 Controller input signal: linear actuator model

It can easily be shown that the stability properties of the closed loop, in case
of the linear actuator model Fa(t) = Kaic(t), presented in Section 2.5, are the
same for both choices of the feedback signal (either c = 0, or c = 1 in (4.4)).

First, it will be shown that the chatter-free τ -periodic solution (x∗(t), ξ∗(t))
will be different for both choices of the controller input signal. To show this,
consider the following decompositions of the state vectors x(t) and ξ(t):

x(t) = x∗(t) + x̃(t), ξ(t) = ξ∗(t) + ξ̃(t). (4.5)
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Then, let us combine (4.1) with (4.3) and F a(t) = Kaic(t) and substitute
x(t) = x∗(t) and ξ(t) = ξ∗(t). Using the fact that x∗(t) is τ -periodic (i.e.
x∗(t) = x∗(t − τ) ∀t), this results in the following closed-loop dynamics:

[
ẋ∗(t)

ξ̇
∗

(t)

]

=

[
A+BaKaDcCa(1−c) BaKaCc

BcCa(1−c) Ac

]

︸ ︷︷ ︸

Acl

[
x∗(t)
ξ∗(t)

]

+ap

[
Bt

0

]z−1∑

j=0

gj

(
φj(t)

)
hj,stat(t)

xF S(t)

[
Kt

Kr

]

.

(4.6)

It can be seen that the closed-loop dynamics governing the periodic solution in
(4.6) is a lti system with a τ -periodic disturbance since both S(t) and hj,stat(t)
are periodic with τ . Then it can be concluded that when full output feedback is
applied (i.e. c = 0), with the assumption that Acl has no eigenvalues at il2πftpe,
for ftpe := 1

τ and all l ∈ Z, the solution x∗(t), ξ∗(t) exists, is unique and is τ -
periodic [53]. Note that this solution differs from the periodic solution of the
open-loop dynamics given in (2.15). The conditions imposed on the eigenvalues
of Acl will in general be satisfied, since the controller has to render the closed-
loop system stable also for ap = 0 (i.e. the eigenvalues of Acl will lie in the open
left half plane). However, when c = 1, and consequently perturbation feedback
is applied, the eigenvalues of Acl are given by the eigenvalues of A and Ac.
Then, there exists a unique, τ -periodic, solution x∗(t), ξ∗(t) when A has no

eigenvalues at il2πftpe, for ftpe := 1
τ , l ∈ Z, and Ac has no eigenvalues with

real part equal to zero. The conditions imposed on A will typically be satisfied
since, in general, the spindle exhibits damping and is therefore described by
an asymptotically stable system. Consequently, under such conditions, in case
of perturbation feedback, ξ∗(t) = 0 is the only solution of (4.6) satisfying
ξ∗(t) = ξ∗(t − τ) ∀t. Therewith, the periodic solution x∗(t) of (4.6) becomes
equal to the solution of the open-loop periodic solution of (2.15). Hence, in
case of perturbation feedback (i.e. y(t) = va(t) − v∗a(t)) the periodic solution
x∗(t) will be equal to that of the uncontrolled system (and ξ∗(t) = 0, i.e.
the nominal control action i∗c(t) = Ccξ

∗(t) + Dcy
∗(t) is zero). On the other

hand, for full output feedback (i.e. y(t) = va(t)) the periodic solution x∗(t)
will be different from that of the uncontrolled system (and ξ∗(t) will in general
be non-zero, i.e. the steady-state control action i∗c(t) = Ccξ

∗(t) + Dcy
∗(t) =

Ccξ
∗(t) + DcCax∗(t) does not vanish).

Secondly, it can be shown that for both choices of the feedback signal the
linearisation of (4.1) with (4.3), and Fa(t) = Kaic(t), about x∗(t), ξ∗(t) is given
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by

[
˙̃x(t)
˙̃ξ(t)

]

=

[
A + BaKaDcCa BaKaCc

BcCa Ac

] [
x̃(t)

ξ̃(t)

]

+ ap

[
Bt

0

] z−1∑

j=0

Hj(t)Ct(x̃(t) − x̃(t − τ)),

(4.7)

with Hj(t) as defined in (2.17). Clearly, for both choices of the control input
signal, the resulting sld will be the same (since the perturbation dynamics (4.7)
does not depend on the constant c). Moreover, in the case of perturbation
feedback (c = 1) the nominal control action vanishes in steady-state, which
is not the case for full output feedback (c = 0). As a result, the choice for
perturbation feedback is favourable from the point of view of bounding the
control action.

4.3.2 Controller input signal: AMB model

A similar analysis can be performed for the model incorporating the model of
an amb. For an amb it is important to limit the input current in order not to
exceed the maximum amount of carrying force. Therefore, in this work, only
perturbation feedback in case of the amb actuator model will be considered.
Namely, as discussed above, in case of perturbation feedback, the required
actuator forces are significantly smaller as compared to the full output feedback
case, which results in a smaller input current for the amb. In Section 2.5, a
linearised model of a nonlinear amb model has been discussed. Based on the
discussion above, it can be stated that when perturbation feedback is applied,
the assumptions, for which the linearisation is a good approximation of the
nonlinear amb model, as discussed in Section 2.5, remain valid. Recall that
the linear model of the amb is given as follows:

F a(t) = Kiic(t) + Ksva(t), (4.8)

where

Ki = diag
(
4kamb,x

i0
v2
0

, 4kamb,y
i0
v2
0

)
, (4.9)

Ks = diag
(
4kamb,x

i20
v3
0

, 4kamb,y
i20
v3
0

)
. (4.10)

Herein, where kamb,k, k ∈ {x, y} are the specific amb coefficients, i0 is the
so-called pre-magnetising current (to compensate for gravity, etc.), v0 the cor-
responding nominal gap displacement and ic(t) is the controller output (i.e. the
input currents to the actuator) and va(t) the measured bearing displacements.
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As before, first the existence of a periodic solution x∗(t) with period time τ
is proven for the case with the amb model. Hereto, consider the milling model,
given by (4.1), with the amb model, given in (4.8), and a linear control law,
given by (4.3) with y(t) = ṽa(t). When a periodic solution of period τ exists, it
holds that x∗(t) = x∗(t− τ) ∀t. Then, in order to prove existence of a periodic
solution, substitute x(t) = x∗(t) into the model, i.e. x̃(t) = 0. Consequently,
the dynamics governing the periodic solution (x∗(t), ξ∗(t)) can be written as
follows:

ẋ∗(t) = Ax∗(t) + Btap

z−1∑

j=0

gj

(
φj(t)

)
hj,stat(t)

xF S(t)

[
Kt

Kr

]

+ BaKiCcξ
∗(t), +BaKsCax∗(t),

(4.11)

ξ̇
∗

(t) = Acξ
∗(t). (4.12)

When Ac has no eigenvalues at the imaginary axis, ξ∗(t) = 0 is the only solution
of (4.12) satisfying ξ∗(t) = ξ∗(t−τ) ∀t. Substituting ξ∗(t) = 0 into (4.11) gives

ẋ∗(t) =
(
A + BaKsCa

)
x∗(t)

+ Btap

z−1∑

j=0

gj

(
φj(t)

)
hj,stat(t)

xF S(t)

[
Kt

Kr

]

.
(4.13)

Since the hj,stat(t) and S(t) are periodic with period time τ , and A+BaKsCa

has in general no eigenvalues at il2πftpe, l ∈ Z, x∗(t) is a τ -periodic solution of
the closed-loop system. The fact that A+BaKsCa has in general no eigenvalues
at il2πftpe, l ∈ Z, is due to the fact that, in general, the amb actuator is
designed such that the decrease in stiffness, due to the negative stiffness effect
of a electromagnetic actuator, see [136], is significantly smaller than the stiffness
of the spindle rotor. Hence, A + BaKsCa will typically exhibit eigenvalues in
the open left-half complex plane. Note that this periodic solution differs from
the periodic solution of the open-loop system without the amb model given by
(2.15), which is due to the fact that the nominal control action vanishes, i.e.
F ∗

a(t) = Kii
∗

c(t) = Ki(Ccξ
∗(t) + Dcy

∗(t)) = 0.

Next, the equations of motions (4.1), (4.3) and (4.8) are linearised about the
periodic solution x∗(t), ξ∗(t). Hereto, consider the decompositions of the state
vectors x(t) and ξ(t) as defined in (4.5) with ξ∗(t) = 0. Then the linearised
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closed-loop equations of motion, using the amb actuator model, are given by

˙̃x(t) =
(
A + BaKsCa

)
x̃(t)

+ Btap

z−1∑

j=0

gj

(
φj(t)

)
Hj(t)Ct

(
x̃(t)−x̃(t − τ)

)

+ BaKi(DcCax̃(t) + Ccξ̃(t)),

˙̃
ξ(t) = Acξ̃(t) + BcCax̃(t)

(4.14)

with Hj(t) as given in (2.17). From the linearised closed-loop equations of
motion, presented above, it can be seen that, for controller design with pertur-
bation feedback, the amb can be modelled by the following linear model:

F̃ a(t) = Ki ĩc(t) + Ksṽa(t), (4.15)

where Ki and Ks as given in (4.9) and (4.10), respectively.

4.3.3 Controller input signal: discussion

From the analysis using the linear actuator model, as presented above, it can
be concluded that the sld with active chatter controller (4.3) does not depend
on the chosen controller input signal. This is due to the fact that the variable
c, indicating whether full output feedback (c = 0) or perturbation feedback
(c = 1) is applied, does not appear in the linearised equations of motion (see
(4.7)). Moreover it is shown that the actuator forces, needed to stabilise the
milling process, will be zero in steady state in case of perturbation feedback
whereas the actuator forces will be non-zero in steady state in case of full
output feedback. This result is exploited for the model incorporating the amb

model, where it is important to limit the actuator input current in order to
avoid actuator saturation. Note that, as described in Section 4.2, the controller
design will be based on a linearised model of the milling process. An important
aspect from a practical point of view is the estimation of the periodic solution
in case of perturbation feedback. The perturbation displacements ṽa(t) can
e.g. be obtained by using a chatter detection algorithm based on a parametric
model of the milling process, as described in Section 3.2. The effect of the
selection of the controller input signal on the required actuator forces will be
further demonstrated by results from time domain simulations (tds) in Section
4.6.

4.4 Modelling for control

The model of the milling process, discussed in Chapter 2, can readily be em-
ployed for stability analysis (i.e. determination of the sld). However, the pres-
ence of time-delay and the explicit time-dependency of the right-hand side of
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the dde (4.1) (and in the linearised dynamics in (4.2)) complicates the employ-
ment of robust control synthesis techniques. Therefore, two model simplifica-
tions are introduced to construct a finite-dimensional, time-invariant model,
which will be more suitable for controller design using µ-synthesis techniques
as pursued in Section 4.5. Moreover, the effect of these model simplifications
on the sld is demonstrated.

First, the discussion will focus on an autonomous approximation of the
linearised nonautonomous dde describing the linearised perturbation milling
dynamics given by (4.2) with F̃ a(t) = Kaĩc(t) for the case of the linear actuator
model and with F̃ a(t) = Ki ĩc(t)+Ksṽa(t) for the amb model. A characteristic
feature of a milling process is that the direction of the cutting forces is a function
of the rotation angle φj(t). As a result, time-dependent functions appear in the
describing model equations through the term Hj(t) in (4.2). In [6], a method
is described which approximates Hj(t) by means of a Fourier series expansion.
The number of harmonics to be considered for an accurate reconstruction of
Hj(t) depends on the immersion conditions (which indicates the percentage
of the tool diameter used during cutting) and the number of teeth in cut. In
this work full immersion cuts are considered (i.e. the entire tool diameter is
used for cutting). Then, as described in [5], it is sufficient to take the average
(zero-order) component of the Fourier series expansion over one tooth passing,
i.e.

H̄ =
1

τ

∫ τ

0

z−1∑

j=0

Hj(t)dt. (4.16)

Since H̄ is valid only between the entry φs and exit φe angles of the cutter (i.e.
when gj(φj) = 1), it becomes equal to the average value of Hj(t) at cutter
pitch angle φp = 2π/z:

H̄ =
1

φp

∫ φe

φs

z−1∑

j=0

Hj(φ)dφ =
z

2π

[
H̄xx H̄xy

H̄yx H̄yy

]

, (4.17)

where the integrated functions H̄xx, H̄xy, H̄yx and H̄yy can be determined an-
alytically in case of a linear cutting model (xF = 1, see [5]) and have to be
computed numerically in case of an exponential cutting model (xF < 1).

At this point a time-invariant dde milling model is obtained, in which the
dependency on the rotation angle φj(t) is eliminated, given as follows:

˙̃x(t) = Ax̃(t) + apBtH̄Ct(x̃(t) − x̃(t − τ)) + BaF̃ a(t),

ṽa(t) = Cax̃(t).
(4.18)

However, averaging the cutting forces may be a rather crude approximation.
Therefore, the error in the stability lobes is examined in more detail for two
different numbers of teeth on the cutting tool.
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Table 4.1: Milling model parameters.

Parameter Value Parameter Value

mt,x = mt,y 0.015 kg Kt 462 [N/mm(1+xF )]
ma,x = ma,y 0.14 kg Kr 38.6 [N/mm(1+xF )]
ωt,x = ωt,y 2350 Hz xF 0.744 [-]
ωa,x = ωa,y 1400 Hz φs 0 [rad]
ζt,x = ζt,y 0.05 [-] φe π [rad]
ζa,x = ζa,y 0.12 [-] fz 0.2 [mm/tooth]

z 2/4 [-]

In Figure 4.3, stability lobes diagrams and the error between the autonomous
and nonautonomous model are given for cutters with two and four teeth.
Hereto, the machine spindle-toolholder-tool dynamics is modelled by two de-
coupled subsystems (representing the dynamics in two (x,y) orthogonal direc-
tions perpendicular to the spindle axis) consisting of two mass-spring-damper
systems to mimic the inherent compliance between actuator and tooltip, see
Figure 4.4, with masses mi,k, i ∈ {a, t}, k ∈ {x, y}, eigenfrequencies ωi,k =
√

(ci,k/mi,k), i ∈ {a, t}, k ∈ {x, y}, and dimensionless damping ratios ζi,k =

bi,k/2
√

(ci,kmi,k), i ∈ {a, t}, k ∈ {x, y}. This is done in order to capture
the inherent dynamics between the actuator/sensor system (denoted by sub-
script a) and the cutting tool (denoted by subscript t). The parameters of the
machine spindle model and cutting force coefficients are listed in Table 4.1.
Herein, the cutting model parameters (Kt, Kr and xF ) are taken from [50]
and spindle parameters are chosen such that these represent realistic machine
spindle dynamics for high-speed milling machines as in [49]. It can be seen
that for this typical case and for a two-fluted cutter, the peak of the lobe of
the time-invariant model is shifted slightly to the right compared to the time-
varying model. For the four-fluted cutter the error is (almost) zero (actually
for a linear cutting force model, i.e. xF = 1, it can be shown that for z = 4 the
error becomes exactly zero). Hence, it can be concluded that, for the given pa-
rameters of the milling process, the time-invariant model is accurate enough for
predicting the chatter stability boundary. However, it should be noted that the
error between the chatter stability boundaries for the autonomous and nonau-
tonomous models depends on the number of teeth on the cutter, the immersion
percentage and the spindle speed.

Secondly, a finite-dimensional approximation of the time delay, using a Padé
approximation, is applied (see also [21, 140] where a Padé approximation of
the time-delay is applied for controller design in case of turning). Hereto, the
delayed tool vibrations ṽt(t − τ) = Ctx̃(t − τ) are approximated using a Padé
approximation and the resulting approximation is denoted by ṽpd(t), such that
ṽt(t − τ) = Ctx̃(t − τ) ≈ ṽpd(t). The milling model in (4.2) with cutting force



70 Active chatter control design using µ-synthesis

 

 

10 20 30 40
0

1

2

3

10 20 30 40
−0.5

0

0.5

Spindle speed [krpm]

E
rr

o
r

[m
m

]

Nonautonomous
Autonomous

D
ep

th
o
f
cu

t
[m

m
]

(a) z = 2.

 

 

10 20 30 40
−0.05

0

0.05

 

 

10 20 30 40
0

0.5

1

1.5

2

Spindle speed [krpm]

E
rr

o
r

[m
m

]
E

rr
o
r

[m
m

]

Nonautonomous
Autonomous

(b) z = 4.

Figure 4.3: Stability lobes diagram using a nonautonomous model (4.2) and an
approximated autonomous model (4.18) (dashed), with F̃ a(t) = 0
and parameters as in Table 4.1 for a two- and four-fluted cutter.
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Figure 4.4: Schematic overview of spindle dynamics model, k ∈ {x, y}.
Fa, va: forces displacements at actuator.
F t, vt: forces displacements at tooltip.

averaging, defined in (4.17), and Padé approximation is given as follows:

[
˙̃x(t)

˙̃xpd(t)

]

=

[
A + apBtH̄(Ct − DpdCt) −apBtH̄Cpd

BpdCt Apd

] [
x̃(t)

x̃pd(t)

]

+

[
Ba

0

]

F̃ a(t), ṽa(t) = Cax̃(t),

(4.19)

where Apd ∈ R2npd ,Bpd ∈ R2npd×2,Cpd ∈ R2×2npd and Dpd ∈ R2×2 denote
matrices of the state-space description of the Padé approximation. The size
of these matrices depends on the chosen order npd for the Padé approxima-
tion. Since the delayed output vector (ṽt(t − τ)) has two elements (x- and
y-direction), the state-space description of the Padé approximation has two
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Figure 4.5: Stability lobes diagram for the approximated autonomous milling
process with Padé approximation of order npd (4.19) and the au-
tonomous milling model with exact time delay (4.18) for two dif-
ferent number of teeth.

times the number of states of the Padé approximation order npd. The order
of the Padé approximation will be based on a desired level of accuracy re-
garding the predicted chatter stability boundary using the model with Padé
approximation. Hereto, in Figure 4.5 stability lobes diagrams are given for the
autonomous model with time-delay given by (4.18) with F̃ a(t) = 0, and (4.19)
with F̃ a(t) = 0 for different orders npd of the Padé approximant with the pa-
rameters of the model listed in Table 4.1. From the figure, it can be observed
that, for increasing order npd of the Padé approximant, the error between the
stability lobes determined using the exact delay term and the approximated
delay term becomes smaller. Moreover, since the delay is inversely propor-
tional to the spindle speed, the approximation becomes more accurate as the
spindle speed increases (i.e. for small delays). Next to that, it can be observed
that when the number of teeth on the cutting tool increases, a lower order for
the Padé approximation may be selected for a desired accuracy. This can be
explained by realising that the delay is inversely proportional with the number
of teeth and the Padé approximants are good near the origin [60]. In this work
the focus lies on relatively high spindle speeds (i.e. above 20 krpm). Hence,
it is sufficient to choose the order of the Padé approximant for z = 2 to be
npd = 15 while for z = 4 the order of the Padé approximation is chosen equal
to npd = 10.
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4.5 Robust controller design

In the previous section, a model has been derived which is suitable for robust
controller design. Therefore, in this section, the actual controller design for
an active chatter control methodology, which will alter the chatter stability
boundary, is presented, such that stable operating points, of higher productivity
can be attained while avoiding chatter.

4.5.1 Control objective

As outlined in the introduction of this chapter, the goal of the current work
is to alter the sld by means of an active control strategy. In other words,
the aim is to design a controller such that the milling process is stabilised for
a pre-defined area of working points (in terms of depth-of-cut ap and spindle
speed n) using limited control effort (i.e. satisfying a specified bound on the
controller gain). This control problem can be cast into the generalised plant
framework and solved using µ-synthesis techniques [142]. The remainder of
this section will be devoted to deriving the generalised plant formulation for
the active chatter control problem as stated in Section 4.2. The set of milling
operations to be stabilised will be expressed as uncertainties in depth of cut ap

and spindle speed n.

4.5.2 Nominal model

Given the milling process, modelled for control as a finite-dimensional linear
time-invariant differential equation in (4.19), see Section 4.4, a linear dynamic
controller K will be designed with transfer function matrix

K(s) =

[
Kxx(s) Kxy(s)
Kyx(s) Kyy(s)

]

, (4.20)

s ∈ C, from controller input signal y(t) = va(t) − cv∗

a(t) to actuator input
ic(t) to effectively adapt the spindle dynamics. However, in contrast to most
active chatter control methods discussed in Chapter 1, in this work not only
the spindle dynamics are considered during the control design, but also the
interaction between the spindle dynamics and the cutting forces (and therewith
the regenerative effect responsible for chatter) is explicitly taken into account.
It is expected that this is a more profound and promising method to make
dedicated modifications to the sld by means of feedback control.

Equation (4.19) together with the appropriate actuator model, i.e. F̃ a(t) =
Kaĩc(t) for the linear actuator model or the amb model as given by (4.15) and
the controller input signal y(t) = va(t)− cv∗a(t), gives the nominal plant model
used during µ-synthesis. A block diagram of the closed-loop process is given in
Figure 4.6.
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Milling model
(4.1)

Controller
(4.3)

Actuator
model

y = va−cv∗a

ic

F a
va y

Figure 4.6: Block diagram of the closed-loop nominal milling process modelled
for control.

4.5.3 Uncertainty modelling

This section describes the modelling of the uncertainties in the process param-
eters and spindle dynamics, which can be considered as a key step in achieving
the control objective defined above: robust stability (i.e. chatter avoidance) in
a predefined range of process parameters. The control design will be based on
the (simplified) milling model (4.19) presented in the previous section.

4.5.3.1 Uncertainty in process parameter: depth of cut ap

First, the uncertainty in depth of cut ap is considered which is modelled as a
parametric uncertainty. An important (practical) aspect is that robust control
design should provide stability for small as well as (relatively) large values of
the depth of cut. Hereto, the uncertain depth of cut is modelled such that
it specifies a range from zero up to a maximum value āp, i.e. ap ∈ [0, āp].
Let us define a real scalar uncertainty set ∆ap

=
{
δap

∈ R : |δap
| ≤ 1

}
. The

uncertainty for the depth of cut is then defined by

ap ∈ {ap ∈ R : ap = 1
2 āp(1 + δap

), δap
∈ ∆ap

}, (4.21)

where āp is the maximal depth of cut for which stable cutting is desired.

4.5.3.2 Uncertainty in process parameter: spindle speed n

Next, the uncertainty model for the spindle speed is considered. As described
before, the delay is inversely proportional to the spindle speed. Hence, uncer-
tainty in spindle speed n is modelled as an uncertainty in the delay τ , where
τ = 60

zn . Since a Padé approximation is a rational function of two polyno-
mials in the Laplace operator s and delay τ , modelling the interval delay via
a parametric uncertainty would result in an overall uncertainty of very large
dimensions (due to the relatively large order of the Padé approximations).

Here an alternative approach will be presented. Hereto, note that for arbi-
trary frequency ω, the value set of the frequency-domain delay operator e−iωτ

for all τ ∈ [τ , τ̄ ] can be represented in the complex plane as a circular arc
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extending along the unit circle. This time-delay interval can be approximated
by choosing any pair of stable transfer functions Gd(s) and Wd(s) such that
Gd(s) + Wd(s)∆d, with ∆d ∈ C and |∆d| ≤ 1, covers the uncertainty set e−iωτ

with τ ∈ [τ , τ̄ ]. Several alternatives exist to determine transfer function Gd(s)
and Wd(s) satisfying these conditions. Chen and Knospe [21] propose to choose
Gd(s) and Wd(s) such that at each frequency: 1) the arc length covered by the
disk Gd(s) + Wd(s)∆d is nearly that of the delay element e−iωτ , for τ ∈ [τ, τ̄ ],
and 2) the area of the disk lying outside the unit circle is minimised. Doing
so results in a transfer function Gd(s) which has twice the order of the cho-
sen Padé approximation. Since the Padé approximation needed to accurately
describe the delay term is already of a relatively high order (e.g. npd = 15 for
z = 2, see Figure 4.5), the generalised plant will be of an even higher order
which is not desired due to possible computational and implementation issues.
Moreover, the size of the circle covering the circular arc of the delay uncertainty
is rather large which is due to the fact that the area of the disk lying outside
the unit circle is chosen to be minimised. This approach may therefore give
conservative results as illustrated for the milling process in [163].

Hence, here a different approach is presented to model the delay uncertainty.
In contrast to the approach as discussed above, the approach to model the delay
uncertainty taken in this thesis is based on a Padé approximation of the nominal
model. The total delay uncertainty interval is then overapproximated using a
low-order transfer function which covers the circular arc of the delay uncertainty
interval along the unit disk about the nominal delay. Hereto, consider the
linearised autonomous milling model, given by (4.18), with a delay uncertainty
only. Basically, this model can be represented by the following state-space
model:

˙̃x(t) = A0x̃(t) + A1x̃(t − τ) + BaF̃ a(t),

ṽa(t) = Cax̃(t).
(4.22)

where A0 = A + apBtH̄Ct, A1 = −apBtH̄Ct and uncertainty set τ ∈ [τ, τ̄ ].
It is easy to show that (4.22) can be written as a feedback interconnection
between the dynamics

˙̃x(t) = A0x̃(t) + A1x̃(t − τ0) − apBtH̄q
d
(t) + BaF̃ a(t),

ṽt(t) = Ctx̃(t),

ṽa(t) = Cax̃(t),

(4.23)

and uncertainty term

q
d
(t) =

(
Dτ −Dτ0

)
ṽt(t), (4.24)

where, τ0 = τ̄+τ
2 and the delay operator Dτ0

is defined as Dτ0
x(t) = x(t − τ0).

The representation of (4.24) in the Laplace domain can be given as

Q
d
(s) =

(
e−sτ − e−sτ0

)
Ṽ t(s), (4.25)
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where Q
d
(s), Ṽ t(s) the Laplace transforms of q

d
(t) and ṽt(t), respectively. Let

κ(ω) be the gain bound of the uncertainty operator (4.24) in the frequency
domain, given as,

κ(ω) : = max
τ∈[τ, τ̄ ]

|e−iωτ − e−iωτ0 |. (4.26)

Since the transfer function
(
e−sτ − e−sτ0

)
is analytic and bounded in the open

right half of the complex plane, the H∞-norm of
(
e−sτ − e−sτ0

)
can be deter-

mined by evaluating the transfer function on the imaginary axis, i.e. for s = iω.
Consequently, in order to determine a bound on

(
e−sτ − e−sτ0

)
, it should be

determined for s = iω. It can be shown, see [71], that the upper bound κ(ω)
on the delay uncertainty is represented as follows

κ(ω) =

{

2 sin δτ ω
2 , ∀ω, 0 ≤ ω ≤ π/δτ

2, ∀ω ≥ π/δτ ,
(4.27)

where δτ = 1
2 (τ̄ − τ). The frequency-dependent upper bound κ(ω) on the delay

uncertainty is not a rational function and can therefore not readily be used
during controller synthesis. Hereto, in [169] rational transfer functions ρl(s)
for several orders l = 1, 2, 3 are derived such that κ(ω) ≤ |ρl(iω)|. Since, in
this work, the high-speed milling process is considered, the delay intervals will
be relatively small (typically of O(10−5) s. for typical spindle speed ranges
of O(103) rpm for spindle speeds n ≥ 20000 rpm). Using this fact, together
with the fact that the dominant spindle dynamics resonances lie in general
between 1 · 103 ≤ ωn

2π ≤ 3 · 103 Hz, implies that typically ω ≤ π/δτ and,
consequently, an accurate approximation of the frequency-dependent upper
bound κ(ω) = 2 sin δτ ω

2 is required. Moreover, from a numerical point of view,
proper transfer functions ρl(s) are desired. Then, based on the results in [169],
ρl(s) is chosen as

ρ1(s) =
δτs

δτ

3.456s + 1
, (4.28)

which ensures a tight over bound of κ(ω) (by |ρl(iω)|) especially in the frequency
region which is relevant in the case of high-speed milling, as is described above.
Hence, by using the results presented above, the delay uncertainty is approxi-
mated by two rational transfer functions Gd(s) and Wd(s), where Gd(s) is the
Padé approximation of e−sτ0 and Wd(s) = ρ1(s), with ρ1 as in (4.28), such
that:

{
(
e−sτ −e−sτ0

)
, s ∈ C, τ ∈ [τ , τ̄ ]}⊆{Wd(s)∆d, s ∈ C, |∆d| ≤ 1}. (4.29)

4.5.3.3 Uncertainty in spindle dynamics

The final uncertainty model describes the uncertainty in the spindle dynamics.
A common way of determining a model of the spindle dynamics is to perform
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identification experiments on a machine spindle at a spindle speed of zero rpm,
after which a parametric model is fit onto the experimentally obtained data
[50, 135]. There will generally be a discrepancy between the parametric model
and the physical system dynamics due to unmodelled dynamics. Moreover, the
dynamics of the physical system may change under varying operating condi-
tions. The most important effect is the stiffness change of the spindle which is
influenced by the spindle speed due to varying centrifugal loads on the spindle
bearings which results in a change of the eigenfrequencies of the milling spindle
[84, 127].

In order to ensure robustness for variations in the spindle dynamics, uncer-
tainty on these dynamics is taken into account during µ-synthesis. In this work,
the uncertainty in spindle dynamics is modelled by means of parametric uncer-
tainties in the natural frequencies ωn = 2πf

n
and the dimensionless damping

ratios ζ. Hereto, the parametric uncertainties in the model parameters are
formulated as:

ωn,j = ω0,j(1 + rω,jδω,j) (4.30)

ζj = ζ0,j(1 + rζ,jδζ,j), (4.31)

where ζ0,j , ωn0,j are nominal values for the j-th spindle mode, with j = 1, . . . , nu

and nu ≤ nx

2 the number of uncertain spindle modes under consideration and
nx the order of the spindle dynamics. Moreover, rω,j , rζ,j are relative uncer-
tainties related to the j-th uncertain spindle mode and δω,j and δζ,j are scalars
satisfying δω,j , δζ,j ∈ R and |δω,j|, |δζ,j | < 1, ∀j ∈ {1, . . . , nu}. Typical values
of rω,j , rζ,j lie in the order of O(10−2).

It should be noted that, by representing the uncertainty in the spindle dy-
namics as given in (4.30) and (4.31), it is assumed that the structure of the
(nominal) model of the spindle dynamics is known. In general, a more extended
uncertainty model of the machine dynamics may be necessary in order to in-
corporate unmodelled dynamics and imperfections due to measurement errors
in the identification process, as will also be illustrated in Chapter 6. Note that
it is possible to incorporate other uncertainty models in the µ-framework, see
[142] for more detail on the modelling of uncertainties. However, for reasons
of simplicity it is assumed that the parametric uncertainty model is sufficient
to illustrate the feasibility of accounting for uncertainties in machine dynamics
during the control design.

4.5.4 Performance requirement

This section discusses the specification of a performance requirement for the
active chatter control design. In essence, the chatter control problem at hand
is a robust stabilisation problem rather than a performance problem. As out-
lined in the problem statement in Section 4.2, the robust stability require-
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Figure 4.7: Block diagram of linearised approximated autonomous milling
model with performance weighting.

ment has to be achieved with limited control effort, since actuator forces
have to satisfy practical saturation limits (of e.g. amb). Therefore, the con-
trol gain will be bounded during µ-synthesis, which reflects the most rele-
vant performance requirement for chatter control. Limiting the control gain is
done by applying an upper bound on the control sensitivity transfer function
KS(s) = (I − K(s)PKS(s))−1K(s), where

PKS(s) =
[
Ca 0

]
(

sI−

[
Ā+apBtH̄(Ct−DpdCt)−apBtH̄Cpd

BpdCt Apd

])−1[
B̄a

0

]

,

gives the transfer function representation from ĩc to ṽa of the nominal plant
given by (4.19). Here, the control sensitivity is defined as the transfer function
from a input signal r(t) (which can e.g. be interpreted as measurement noise
on the measured perturbation displacements ṽa(t) entering the feedback loop)
to the control input ic(t). In addition, system- and input-matrices Ā and B̄a,
of the spindle-actuator dynamics G(s) where

G(s) =

[
Ct

Ca

]
(
sI − Ā

) [
Bt B̄a

]
, (4.32)

depend on the chosen actuator model. For the linear actuator model (F̃ a =
Kaĩc) Ā and B̄a become:

Ā = A, B̄a = BaKa. (4.33)

For the linear amb model, given in (4.15), these matrices are defined as follows:

Ā = A + BaKsCa, B̄a = BaKi, (4.34)

where Ki and Ks are defined in (4.9) and (4.10), respectively. The bound on
the control sensitivity is enforced by defining a weighting function WKS(s),
which will be described below, such that the performance output of the gener-
alised plant is the weighted control sensitivity (WKS(s)KS(s)). A schematic
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overview of the closed-loop approximated autonomous milling model with per-
formance weighting is given in Figure 4.7. Then, the problem in which it is
aimed to find a µ-optimal controller K(s) which stabilises the milling process
in the face of modelled uncertainties (in ap, τ and the spindle dynamics) while
minimising the peak magnitude of the weighted control sensitivity; that is a
controller which achieves ‖WKS(s)KS(s)‖∞ < γ, min γ ∈ R. Of course, min-
imising the weighted control sensitivity actually enforces a frequency-dependent
upper bound on the magnitude of control gain |K(s)| rather than on the mag-
nitudes of the actual control input ĩc(t). Hence, by estimating the magnitude
of the inputs to the controller, i.e. of the chatter-related tool displacements in
x- and y-direction, an appropriate bound on the control gain can in practice
be chosen such that the actuator forces are satisfying given saturation limits.

In this work, the weighting transfer function matrix WKS(s) is chosen to
be diagonal, because of the two-dimensional nature of the control input ic(t),
i.e. WKS(s) = diag(WKS(s), WKS(s)). Moreover, its structure is chosen such
that WKS(s) is a double lead-lag filter with high- and low-pass characteristics.
This means that, for frequencies f between roll-off frequencies fr,l < f < fr,h,
the control gain is limited by a certain value and that, for frequencies smaller
than fr,l and larger than fr,h, the inputs to the controller are attenuated in
order to reduce the (undesired) influence of, firstly, a DC-component in the
control force due to a DC component in the measured displacements in the
case of full output feedback and, secondly, high-frequent measurement noise on
the control action. This weighting function WKS(s) is written as:

WKS(s) = Kp

1
2πfr,l

s + 1

1
2πfp,l

s + 1
·

1
2πfr,h

s + 1

1
2πfp,h

s + 1
, (4.35)

where Kp denotes the gain of the weighting function. Two poles, at frequencies
fp,l and fp,h (such that fp,l < fr,l and fp,h > fr,h), are added to obtain a proper
weighting function, necessary for implementation. As often in robust control,
WKS(s) is chosen in an iterative fashion.

4.5.5 Generalised plant formulation

Based on the discussion on uncertainty modelling and the specification of a
performance requirement in the previous sections and the milling model for
control, presented in Section 4.4, the control problem will be transformed into
the generalised plant framework [142]. Figure 4.8 shows the configuration of
this framework. The generalised plant P is a given system with three sets of
inputs and three sets of outputs. The signal pair p, q denote the in-/outputs
of the uncertainty channel. The signal r represents an external input in which
possible disturbances, measurement noise and reference inputs are stacked. The
signal ĩc is the control input. The output z can be considered as a performance
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Figure 4.8: Generalised plant interconnection.

variable. In this case z will be considered as the weighted control input, i.e.
z(s) = WKS(s)̃ic(s), s ∈ C, in order to limit the controller effort required for
stabilising the uncertain milling process. The output y, finally, is the measured
output, and is available for feedback (i.e. y = ṽa in the case of perturbation
feedback).

A block diagram of the generalised plant P and uncertainties can be found in
Figure 4.9. In order to derive the generalised plant, first, consider the following
state-space descriptions of the systems GdI2, WdI2, where In∈Rn×n and WKS,
respectively:

GdI2

{

ẋd(t) = Adxd(t) + Bdṽt(t),

vd(t) = Cdxd(t) + Ddṽt(t),
(4.36)

WdI2

{

ẋw(t) = Awxw(t) + Bwṽt(t),

p
d
(t) = Cwxw(t) + Dwṽt(t),

(4.37)

WKS

{

ẋKS(t) = AKSxKS(t) + BKS ĩc(t),

z(t) = CKSxKS(t) + DKS ĩc(t),
(4.38)

where the size of Ad is chosen such that vp(t) ≈ ṽt(t − τ0). Next, consider the
linearised autonomous milling model as described by (4.18) (including actuator
model F̃ a = Kaĩc or amb model (4.15)):

˙̃x(t) = Āx̃(t) + apBtH̄Ct(x̃(t) − x̃(t − τ0)) + B̄aĩc,

ṽa = Cax̃(t),
(4.39)

with Ā and B̄a as defined in (4.33) in case of the linear actuator model F̃ a =
Kaĩc and as defined in (4.34) for the amb model.
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Figure 4.9: Block diagram of the generalised plant P, indicated by the grey
area, and controller K and uncertainties ∆.

Then, by adding the uncertainty and performance channel in-/output, de-
noted by p(t), q(t) and r(t), z(t), respectively to the system and rearranging
terms the generalised plant P is given as follows :

ẋP (t) = AP xP (t) + BP uP (t),

vP (t) = CP xP (t) + DP uP (t),
(4.40)

with the state vector xP (t) = [x̃T (t) xT
d (t) xT

w(t) xT
KS(t)]T , input vector uP (t) =

[qT (t) rT (t) ĩ
T

c (t)]T , output vector vP (t) = [pT (t) zT (t) yT (t)]. The uncertainty
channel input p(t) and output q(t) are defined as

p(t) = [pT
m

(t) pT
d
(t) pT

ap
(t)]T , and q(t) = [qT

m
(t) qT

d
(t) qT

ap
(t)]T ,

where the subscripts m, d and ap denote the input/output of the machine
dynamics, delay and depth of cut uncertainty, respectively. The state-space
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matrices of the generalised plant are defined as follows:

AP =







Ā + 1
2 āpBtH̄(I − Dd)Ct − 1

2 āpBtH̄Cd 0 0

BdCt Ad 0 0

BwCt 0 Aw 0

0 0 0 AKS







, (4.41)

BP =







Bm − 1
2 āpBtH̄ Bt 0 B̄a

0 0 0 0 0

0 0 0 0 0

0 0 0 0 BKS







, (4.42)

CP =









Cm 0 0 0

DwCt 0 Cw 0
1
2 āpH̄(I − Dd)Ct − 1

2 āpH̄Cd 0 0

0 0 0 CKS

Ca 0 0 0









, (4.43)

DP =









0 0 0 0 0

0 0 0 0 0

0 − 1
2 āpH̄ 0 0 0

0 0 0 0 DKS

0 0 0 I 0









. (4.44)

Herein, Bm and Cm denote the input/output matrices of the feedback inter-
connection between the nominal model of spindle dynamics and corresponding
uncertainty, which is given as

ẋ(t) = Āx(t) + Bmq
m

(t),

p
m

(t) = Cmx(t),

q
m

(t) = ∆mp
m

(t),

where the size of Bm, ∆m and Cm depend on the number of uncertain spindle
modes under consideration with

∆m = {diag
(
δω,jI3, δζ,jI1

)
: δω,j , δζ,j ∈ R, |δω,j |, |δζ,j| < 1,

∀j ∈ {1, . . . , nu}, In∈R
n×n}

(4.45)

with nu the number of uncertain spindle modes under consideration. Com-
bining all the sources of uncertainty as described in Section 4.5.3, the total
uncertainty block ∆ is given as:

∆ = {diag(∆m, ∆dI2, δap
I2) : In∈R

n×n, δap
∈R, ∆d∈C,

|∆d|, |δap
| < 1}

(4.46)

with ∆m as defined in (4.45). From the definition of the generalised plant P and
corresponding uncertainty set ∆ it becomes clear that the control problem at
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hand is a robust performance problem which contains structured uncertainties,
i.e. the uncertainty ∆ is not a full complex matrix but has specific elements
which contain uncertainties. Hence, it is recommended to solve the problem
using µ-synthesis, which will be discussed in the following section.

4.5.6 Controller synthesis

In this section, the problem of finding controllers which satisfy the requirements
as defined in Section 4.2, will be discussed. As discussed in the previous section,
the control problem at hand is a robust performance problem. The problem is
to find a controller K such that the H∞-norm of the performance channel (i.e.
the transfer function from r to z ) with the controller in closed-loop, becomes
smaller than 1, for all allowed uncertainties ∆. As shown in [181], the robust
performance problem can be transformed into a robust stability problem by
adding an extra uncertainty block ∆P ∈ C

2×2,‖∆P‖∞ < 1, associated with
the performance channel, to the problem. A block diagram interpretation of the
transformation can be found in [142, p. 318]. The newly obtained uncertainty
block is then given as follows:

∆̂ =

[
∆ 0

0 ∆P

]

. (4.47)

Then robust stability can be tested by computing the structured singular value
µ∆̂ of the interconnection of the generalised plant P and controller K, denoted
by N and defined in (4.50) below, with respect to the expanded uncertainty
set ∆̂, i.e.

sup
ω∈R

µ∆̂(N) < 1. (4.48)

For the definition of the structured singular value µ∆̂, see Appendix A. Herein,
N is defined as the lower fractional transformation between P and K. Consider
the following decomposition of the transfer function matrix of the generalised
plant P,

P =

[
P11 P12

P21 P22

]

, (4.49)

with
[
p
z

]

= P11

[
q
r

]

+ P12 ĩc, y = P21

[
q
r

]

+ P22ĩc.

Then the lower fractional transformation between P and K, i.e. Fl(P,K), is
defined as follows:

N := Fl(P,K) = P11 + P12K(I− P22K)−1P21. (4.50)
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For more information on lower fractional transformations the reader is referred
to [181]. Then, the optimisation problem of computing the µ-optimal controller
K which minimises the structured singular value µ∆̂ with respect to uncertainty

set ∆̂, is defined as follows:

min
K

sup
ω∈R

µ∆̂(N) (4.51)

with N as defined above. Unfortunately, the computation of µ∆̂ is in general
a difficult problem [142]. However, an upper and lower bound on µ∆̂ may
be computed. In most cases the upper bound approximation is used since
this is a convex optimisation problem in the scaling matrices [142]. The up-
per bounds may be computed for purely complex uncertainty sets as well as
mixed real/complex uncertainties [178]. However, the upper bound in case of
mixed real/complex uncertainties may result in scaling matrices of relatively
high order. It is well known that the order of the resulting controller is directly
related to the order of the generalised plant (with scaling matrices) and the
order of the controller cannot be restricted using standard controller synthesis
algorithms [165]. As the generalised plant in this work is already of relatively
high order (since a relatively high-order Padé approximation is needed to accu-
rately approximate the time delay), the scalar uncertainties will be modelled as
complex uncertainties. The additional conservatism introduced by considering
only complex uncertainties during the controller design is accepted in order
to avoid the design of a controller of even higher order. Then the complex
uncertainty set ∆̂c is given as follows:

∆̂c =

[
∆c 0

0 ∆P

]

, (4.52)

with

∆c = {diag(δω,jI3, δζ,jI1, ∆dI2, δap
I2) : δω,j , δζ,j, δap

∈C, ∆d∈C,

|∆d|, |δω,j|, |δζ,j |, |δap
| < 1, ∀j∈ {1, . . . , nu}, In∈R

n×n}.
(4.53)

Then the optimisation problem (4.51) can be reformulated by using the upper
bound on the complex structured singular value µ∆̂c

. The upper bound on

µ∆̂c
with complex uncertainties ∆̂c is defined as follows:

µ∆̂c
≤ min

Dω∈D

σ̄(DωND−1
ω ), (4.54)

with σ̄(N) the largest singular value of the matrix N, D the set of matrices Dω

which commute with the uncertainty set ∆̂c, i.e. which satisfy Dω∆̂c = ∆̂cDω,
see e.g. [117] for more details on the computation of lower and upper bounds
on the complex structured singular value. Using the upper bound on µ∆̂c

as
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defined above, the optimisation problem (4.51) is relaxed as follows:

min
K

min
D∈H∞

sup
ω∈R

σ̄(DND−1), (4.55)

where H∞ denotes the set of functions that are analytic and bounded in the
open right half plane. The optimisation problem (4.55) is normally iteratively
solved for K and D. This approach is known as D-K-iteration [181]. For a
fixed scaling transfer matrix D, the problem reduces to a standard H∞ syn-
thesis problem, which can be turned into a convex optimisation problem. The
optimisation problem for a fixed controller matrix, i.e. the problem of determin-
ing the optimal scaling matrix Dω for a given frequency ω can also be recast
in to a convex optimisation problem. Both the D as well as the K step in the
D-K-iteration can be solved using algorithms from the Robust Control Toolbox
of Matlab [107].

4.5.7 Controller order reduction

Due to the relatively high order of the Padé approximation needed to accurately
describe the delay term, the resulting controllers will be of relatively high order
(nc > 30), see [33]. As discussed above, the spindle dynamics typically has
resonances lying between 1 · 103 ≤ ωn

2π ≤ 3 · 103 Hz, which will generally result
in relatively fast controller poles which in turn require relatively large sample
frequencies in a digital implementation. Hence, for the purpose of the feasibility
of the implementation of the proposed active chatter control methodology in
practice, controller order reduction should be applied.

Balanced truncation is an order reduction procedure which is often applied
to tackle such model reduction problems. However, balanced truncation can
only be applied in case the system to be reduced is stable. The control synthe-
sis procedure discussed in the previous section does, however, not guarantee
the design of stable controllers. To deal with this fact, closed-loop balanced
truncation can be applied, see [20].

The controller states which do not contribute significantly to the closed-loop
input/output of the generalised plant will be removed from the controller using
closed-loop balanced truncation. After that, robust performance for the closed-
loop system with the reduced-order controller is evaluated by determining µ∆c

-
values. The acceptable amount of reduction is defined as the smallest controller
order for which supω∈R µ∆̂c

< 1.

As already outlined above, the robust control problem under consideration
has structured uncertainties, which will be solved via D-K-iteration. Hence,
during closed-loop balanced truncation, the D-scaling matrices obtained during
controller synthesis are absorbed into the generalised plant.
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4.6 Results

In this section, the results for controller synthesis for a realistic model of a high-
speed milling machine is addressed. In order to demonstrate the feasibility of
the µ-synthesis approach proposed in the previous section, control design is
performed for an illustrative example.

Hereto, consider the parameters of the milling process as given in Table 4.1.
The spindle dynamics is modelled, as before, by two decoupled subsystems each
consisting of a two mass-spring-damper model in order to capture the inherent
compliance between the actuator/sensor system (with mass ma,j, j = x, y) and
the cutting tool (with mass mt,j , j = x, y), see Figure 4.4.

The presentation of the results is organised as follows. Firstly, controllers
will be synthesised considering the linear actuator model. Stability diagrams
will be presented and the results will be compared to the results from time-
domain simulations, using the milling model presented in Section 2.6. Secondly,
a controller will be designed for the milling model including the amb model as
presented in Chapter 2.

4.6.1 Case study with a linear actuator model

The goal is to design controllers that stabilise milling operations (i.e. guaran-
tee the avoidance of chatter), using the linear actuator model F a(t) = Kaic(t),
where for sake of simplicity Ka is chosen as, Ka = I, for two different ranges of
spindle speed intervals, for a range of depth-of-cut ap which should be as large
as possible for a given performance requirement (i.e. for a given limitation of
the control gain). Hereto, µ-synthesis (see Section 4.4) is employed within a
bi-section scheme, where āp is chosen as the optimisation parameters in the
bi-section scheme. Moreover, a controller is designed that stabilises milling op-
erations for a range of spindle speeds where the machine dynamics is uncertain.

The performance requirement, presented in the previous section, is used
to limit the actuator forces. The choice of the gain Kp of the performance
weighting WKS in (4.35) will influence the maximum depth of cut āp for which
robust stability can be guaranteed. In practice, the choice of the gain Kp

will be a design trade-off between the maximum achievable force generated by
the actuator and the desired maximum achievable depth of cut āp. For this
illustrative example, it is assumed that the actuator is able to deliver forces up
to 1 · 103 N (which is the typical maximum force an amb can deliver for the
spindle under consideration [136]). For the spindle under consideration typical
measured displacements ṽa(t), related to the onset of chatter, are of the order
of 1 · 10−3 mm. Then, an upper bound on the control gain due to physical
constraints of the actuator is set to |K(s)| = 1 · 106 N/mm and consequently
Kp in (4.35) is set equal to 1 ·10−6 mm/N. Moreover, the remaining parameters
of the weighting filter WKS(s) are set to fr,l = 100 Hz, fr,h = 7500 Hz, fp,l =
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1 · 10−4 Hz and fp,h = 1 · 105 Hz, where the high-frequent roll-off frequency
is set to approximately three times the largest eigenfrequency of the machine
spindle dynamics and the additional poles are added such that, firstly, WKS

is well-posed and, secondly, the generalised plant fulfills the rank conditions
typically made in the H∞ problem, see [142, p. 354].

Controllers K(s) are designed for two different ranges of spindle speeds,
namely a relatively small interval given as n ∈ [27990, 28010] rpm and a rela-
tively large interval given as n ∈ [36000, 38000] rpm. Moreover, a four-fluted
tool is considered. Consequently, as already discussed in Section 4.4, a 10-
th order Padé approximation is used to approximate the time delay in the
milling model. Controller synthesis using D-K-iteration yields a 42-th order
controller for a maximal depth of cut of āp = 2.67 mm (supω∈R µ∆̂c

= 0.969)
for n ∈ [27990, 28010] rpm and a 50-th order controller for a maximal depth of
cut of āp = 2.89 mm (supω∈R µ∆̂c

= 0.979) for n ∈ [36000, 38000] rpm. The
difference between the controller orders is due to a difference in the D-scales.

The controllers are of relatively high order, due to the relatively high-order
Padé approximation needed to approximate the delay term. Hence, first the
controller order will be reduces by applying closed-loop balanced truncation as
discussed in Section 4.5.7. In Figure 4.10, the µ∆̂c

-value for different controller
orders (after reduction) are depicted for the two ranges of spindle speeds. In
general, closed-loop stability cannot be guaranteed after controller order re-
duction. Therefore, before determining the µ∆̂c

-value for a specific reduced-
order controller, first stability of the nominal closed-loop system is checked.
When the closed-loop system is stable the corresponding µ∆̂c

-value is deter-
mined. From these results, the lowest controller order is selected for which ro-
bust performance can be guaranteed, i.e. the lowest controller order for which
supω∈R µ∆̂c

< 1. This yields a 24-th order controller for n ∈ [27990, 28010] and
a 18-th order controller for n ∈ [36000, 38000] rpm. So, it can be concluded
that a significant reduction of the controller order can be achieved while still
guaranteeing robust stability and performance.

Frequency response functions (frf) of the full- and reduced-order con-
trollers together with the inverse of the frequency bound imposed on the control
sensitivity (i.e. W−1

KS(s)) are given in Figure 4.11. It can be seen that the result-
ing controllers exhibit highly dynamical characteristics indicated by the inverse
notches in the frf. Moreover, compared to the small spindle speed range (n ∈
[27990, 28010] rpm), the (inverse) notch-like characteristics of the controller
designed for the larger spindle speed range (n ∈ [36000, 38000] rpm), exhibit
more damping. Next, it can be concluded that the magnitude of the controllers
do not exactly fulfill the imposed bound, which is due to the fact that the
bound is imposed on the control sensitivity KS(s) = (I−K(s)PKS(s))−1K(s).
Moreover, it can be seen that the full- and reduced-order controller have simi-
lar frf magnitudes (therefore, the difference is hardly visible in Figure 4.11).
Hence, it is expected that robust performance is maintained under controller-
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Figure 4.10: Closed-loop µ∆̂c
-values for reduced controllers using closed-loop

balanced truncation. Black bars indicate an unstable closed-loop.

order reduction. To verify whether robust performance is maintained, stability
lobes diagrams (slds) are determined using the linearised non-autonomous
milling model (Equation (4.2)), as outlined in Section 2.7, for the case with
and without control. The resulting slds can be found in Figure 4.12. It can
be seen that the sld of the controlled milling are shaped such that it contains
a lobe in the desired spindle speed range. Stability is ensured up to a depth
of cut ap,max = 2.91 mm (an increase of approximately 660% compared to the
case without control) and ap,max = 3.37 mm (an increase of approximately
250% compared to the case without control) where controllers are designed
for n ∈ [27990, 28010] rpm and n ∈ [36000, 38000] rpm, respectively. Herein,
ap,max denotes the maximal achievable depth of cut in the sld in the desired
spindle speed range. Figure 4.12 clearly illustrates the power of the proposed
approach, as the sld is shaped locally to be able to increase ap at a specific
spindle speed (while avoiding chatter and satisfying a specified bound on the
control gain). This is contrary to the application of active damping which lifts
the sld over the entire spindle speed range at the cost of high required levels of
actuation energy. Whereas stability is increased at the desired spindle speeds,
it decreases significantly at other spindle speeds. The characteristics of the
controller design and its ability to shape the sld in a dedicated fashion can be
explained by further examining the controlled spindle dynamics.

The frf of the closed-loop tool-tip spindle dynamics Gtt,c(s) (i.e. the frf

from F̃ t(t) to ṽt(t)) is given, together with the original (uncontrolled) spindle
dynamics, in Figure 4.13. While the original (uncontrolled) spindle dynam-
ics only has x- and y-components (due to decoupled spindle dynamics), the
controlled machine dynamics also has off-diagonal components. This can be
explained by the fact that controller design is performed using the complete
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Figure 4.11: Magnitude of frf of the full-order (black) and reduced-order
(grey) controllers obtained by D-K-iteration for two different range
of spindle speeds n ∈ [27990, 28010] and n ∈ [36000, 38000] rpm.
The difference between the controller orders is due to a difference
in the D-scales.
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Figure 4.12: Stability lobes diagrams, determined using the linearised nonau-
tonomous milling model (4.2), for reduced-order controllers de-
signed for two different range of spindle speeds, n ∈ [27990, 28010]
and n ∈ [36000, 38000] rpm.

milling model where coupling between x- and y-direction is introduced by the
cutting force model (resulting in a full matrix H̄ in (4.17) and consequently in
a full 2 × 2 controller K(s), see also Figure 4.11).

A striking characteristic displayed in Figure 4.13 is the fact that the con-
troller has tailored the spindle dynamics such that the resonances are shifted.
For the small spindle speed range (n ∈ [27990, 28010] rpm), a dominant weakly
damped resonance can be seen which is located at f = 1867 Hz. A better
damped resonance around f = 2400 Hz, which lies at the edge of the range of
desired tooth passing frequencies, is created in case of the larger spindle speed
range (n ∈ [36000, 38000] rpm). As a matter of fact, the location of these
resonances correspond to the tooth passing excitation frequencies ftpe = nz

60
for milling operations within the defined spindle speed ranges (in this case
n = 28000 rpm and n = 36000 rpm, respectively). Hence, it can be con-
cluded that, in order to create a stability lobe at a certain spindle speed, the
resonance frequency of the spindle dynamics should be set equal to the cor-
responding tooth passing excitation frequency, see also [8]. The fact that a
closed-loop spindle resonance situated at a tooth-passing excitation frequency
is beneficial for avoiding chatter can be explained as follows. In the milling
process the highest depth of cut can be obtained (corresponding to a peak in
the sld) when the dynamic chip thickness hj,dyn(t) = vt(t) − vt(t− τ) is equal
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to zero. This relation can be transformed to the frequency domain as follows:

Hj,dyn(iω) = (1 − e−iωτ )V t(iω) =: Q(iω)V t(iω), (4.56)

where Hj,dyn(iω) and V t(iω) are the Fourier transforms of hj,dyn(t) and vt(t),
respectively. Hence, the difference between the tooltip displacements of the
present and previous cut is actually characterised by a filter, denoted by Q(iω),
with zeros at lωτ = lω 1

ftpe
, l = 0, 1, 2, . . .. Moreover, for the milling process,

the dominant (chatter) frequency of the perturbation vibrations lies in general
close to the eigenfrequency of the spindle dynamics [77]. Then, by designing
the controller such that the closed-loop resonance is close to a tooth-passing
frequency and due to the filter properties of the Q(iω) (in particular the location
of the zeros of Q(iω) at ftpe-related frequencies), the dynamic chip thickness is
enforced to be zero at the desired spindle speed. This, in turn, results in a large
depth of cut within the desired spindle speed range and a peak in the sld at
that spindle speed. So, by means of applying robust control design techniques,
a controller is obtained which tailors the tooltip spindle dynamics, such that
a resonance is created at a tooth passing harmonic which in turn results in a
peak in the sld. Comparing this with the analysis given for the spindle speed
selection procedure, as discussed in Chapter 3, it can be seen that the line of
reasoning is similar for both cases. The adaptive spindle speed selection control
algorithm alters, in case of (onset) of chatter, the spindle speed, resulting in a
change in the delay τ , and therewith the zeros of Q(iω) are altered, whereas the
active chatter control procedure, proposed in this chapter, alters the frequency
content of V t(iω) such that it matches the zeros of Q(iω).

Next, controllers will be determined for a spindle speed range of n ∈
[29000, 31000] rpm where, not only uncertainties in spindle speed and depth
of cut are considered, but also the spindle dynamics are considered uncertain.
This is an important aspect from a practical point of view, since, as described
before, the spindle dynamics depends on the spindle speed. As before, the
parameters of the milling process as given in Table 4.1 are considered, and the
parameters of the weighting filter WKS as defined above. It is assumed that
the natural frequencies ωa,x, ωa,y and the damping ratios ζa,x, ζa,y may vary
up to 5% of their nominal values. Hereto, consider the following definitions of
the vector of natural frequencies ωn,0 and dimensionless damping ratios ξ

0
:

ωn,0 =
[
ωa,x ωa,y ωt,x ωt,y

]T
, ζ

0
=

[
ζa,x ζa,y ζt,x ζt,y

]T
.

Then, the relative uncertainty parameters are set as rω,j = rζ,j = 0.05 for
j = 1, 2 in (4.30) and (4.31). D-K-iteration yields a controller of order 66
for a maximal depth of cut of āp = 1.69 mm (supω∈R µ∆̂c

= 0.96). Af-
ter closed-loop balanced truncation the controller order can be reduced to 29
(supω∈R µ∆̂c

= 0.97). Stability lobes diagrams (slds) are determined using
the reduced-order controller where 50 (randomly chosen) samples are taken
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(b) n ∈ [36000, 38000] rpm.

Figure 4.13: Controlled Gtt,c(iω) (black) and uncontrolled (open-loop) Gtt(iω)
(grey) tooltip spindle dynamics for reduced-order controllers
designed for the two different range of spindle speeds, n ∈
[27990, 28010] and n ∈ [36000, 38000] rpm. The interval of tooth
passing excitation frequencies corresponding to the spindle speed
range is indicated by the grey area.
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from the uncertain spindle dynamics set. The results are gathered in Figure
4.14. From the stability lobes diagram, given in Figure 4.14(a), it can be seen
that, again, the sld (which, in this case, gives a range of stability boundaries,
indicated by the grey area in Figure 4.14(a), due to the uncertain spindle dy-
namics) is altered such that the desired domain of stable operating points is
stabilised (for any sample of the uncertain spindle dynamics in the uncertainty
set). Due to the presence of the spindle dynamics uncertainty, the maximal
depth of cut for which stability is guaranteed (in this case āp = 1.69 mm) will
be lower than for the case without spindle dynamics uncertainty, which is as
expected. Samples of the uncertain closed-loop tooltip spindle dynamics are
given in Figure 4.14(b). Also the nominal spindle dynamics (i.e. the spindle
dynamics for rω,j = rζ,j = 0 for j = 1, 2) with (solid) and without (dashed)
control are given. As before, it can be seen that the closed-loop spindle dynam-
ics is tailored such that a closed-loop resonance is situated at a tooth passing
harmonic (in this case around 2000 Hz which is the tooth passing frequency
at n = 30000 rpm) resulting in a peak in the sld at the desired spindle speed
interval. Moreover, it can be seen that the uncertain spindle speed modes are
moved to a lower frequency region.

In the final part of this section, some results from time-domain simulations
(tds) will be discussed. Hereto, the nonlinear nonautonomous delay differ-
ential equations describing the total milling model, given by (4.1), have been
implemented in Matlab/Simulink [107]. The purpose of the tds is to demon-
strate the difference between the two different choices of feedback signal, i.e.
using full output feedback (c = 0) and using perturbation feedback (c = 1),
see Section 4.3. In order to apply perturbation feedback, the periodic solu-
tion x∗(t) has to be known. As already explained in Section 4.3, in case of
perturbation feedback, the periodic solution of the closed-loop system becomes
equal to the periodic solution of the open-loop system which is the solution
of (2.15). To apply perturbation feedback in the tds the ordinary differential
equation (ode) describing the periodic solution dynamics (i.e. Equation (2.15))
is included in the Matlab/Simulink model. In practice, the perturbation dis-
placements ṽa(t) can be obtained by using a chatter detection algorithm based
on a parametric model of the milling process, as described in Section 3.2.

The controller determined for the spindle speed range of n ∈ [36000, 38000]
rpm is used during the tds. In order to compare the performance of the
milling process with and without chatter control the simulation is performed
for an operating point which is originally unstable, but is stabilised by means of
control. Here, the operation point under consideration has the process param-
eters n = 37000 rpm and ap = 2 mm, which is originally an unstable working
point (see Figure 4.12). The results are gathered in Figures 4.15 and 4.16.
Figure 4.15 presents the displacements at the tooltip with control off, control
on with full output feedback (c = 0) and control on with perturbation feedback
(c = 1). Furthermore, the τ -sampled tool displacements are depicted by dots.
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(b) Tooltip frf.

Figure 4.14: Stability lobes diagram and controlled Gtt,c(iω) and uncon-
trolled (open-loop) Gtt(iω) tooltip spindle dynamics for reduced-
order controllers designed for a range of spindle speeds, n ∈
[29000, 31000], where the spindle dynamics is considered uncer-
tain. Samples of the uncertain machine dynamics (grey) are used
to determine sld and frfs. Moreover, the nominal frf and cor-
responding sld (i.e. rζ,j = rω,j = 0 for j = 1, 2 in (4.30) and
(4.31)) of the controlled (solid) and uncontrolled (dashed) tooltip
spindle dynamics are given in black. The interval of tooth passing
excitation frequencies corresponding to the spindle speed range is
indicated by the grey box.
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(c) Control on, c = 1.

Figure 4.15: Displacements at the tooltip vt(t) for a time-domain simulation
performed for n = 37000 rpm and ap = 2 mm where the controller
designed for a spindle speed range of n ∈ [36000, 38000] rpm is
switched on and off. For the case where the controller is switched
on, full output (c = 0) and perturbation feedback (c = 1) is
considered.

When the control is switched off the periodic motion becomes unstable. It can
be seen that in that case the displacement results in a quasi-periodic motion.
When the controller is switched on, the motion for the initially unstable work-
ing point is stabilised, which can be seen from the τ -sampled displacements.
Note that the stabilised motion is the τ -periodic non-chatter solution of the
periodic dde describing the milling process. Moreover, it can be seen that the
amplitude of the displacements is considerably smaller for the case with active
chatter control as compared to the uncontrolled case. It should be noted that
the motions for the two cases where the controller is switched on differ. This
is due to the fact that a different input signal is applied to the controller (ei-
ther the full displacements or the perturbation motion are used as controller
input signal). As shown in Section 4.3, in case of perturbation feedback, the
resulting stable motion is equal to the open-loop periodic motion while this
is not the case when full output feedback is applied. The difference between
the two choices of the controller input signal can also be seen when regarding
the actuator forces needed to stabilise the milling process, see Figure 4.16. It
can be seen that, when perturbation feedback is applied, the actuator forces
are (almost) zero. This is due to the fact that, when the milling operation
is stable, the perturbations about the periodic solution are zero. Hence, the
actuator forces will be zero in steady state. Since the nominal solution of the
milling process is a periodic solution, the actuator forces will be nonzero for
the full output feedback case. The results from time-domain simulations clearly
demonstrate the benefit of applying perturbation feedback.
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Figure 4.16: Actuator forces F a(t) for a time-domain simulation performed for
n = 37000 rpm and ap = 2 mm and full output (c = 0) and
perturbation feedback (c = 1) is considered. The controller is
designed for a spindle speed range of n ∈ [36000, 38000] rpm.

4.6.2 Case study with an AMB model

Next, the results will be presented where controllers are determined to alter the
chatter stability boundary while including the amb model with perturbation
feedback in the milling model, as presented in Section 2.5. The parameters of
the amb model are listed in Table 4.2 and are taken from [133]. The goal is to
design a controller that stabilises milling operations for n ∈ [30000, 32000] rpm,
for a depth of cut which is as large as possible given the performance require-
ment on the control sensitivity KS. Hereto, again µ-synthesis is applied within
a bi-section scheme. For an amb it is important to limit the input current in
order not to exceed the maximum amount of carrying force. Here, the bound on
the input current is set to i = 2 A. Together with typical bearing displacements
ṽa(t), related to the onset of chatter, of approximately 1 · 10−3 mm, Kp is set
1 ·10−3/2 mm/A. Next, D-K-iteration yields a 36-th order controller for a max-
imal depth of cut of āp = 2.18 mm, where supω∈R µ∆̂c

= 0.9915. Closed-loop
controller reduction yields a 16-th order controller, where supω∈R µ∆̂c

= 0.9964.

Frequency response functions (frf) of the full- and reduced-order con-
trollers together with the inverse of the frequency bound imposed on the control
sensitivity (i.e. W−1

KS(s)) are given in Figure 4.17. It can be seen that, as before,
the resulting controllers exhibit highly dynamical characteristics indicated by
the inverse notches in the frf. Moreover, as before, the difference between the
full- and reduced-order is hardly visible in Figure 4.17.

Using the reduced-order controller, the chatter stability boundary is de-
termined using the linearised milling model with the amb model as in (4.14).
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Figure 4.17: Magnitude of frf of the full-order (black) and reduced-order
(grey) controllers obtained by D-K-iteration for the amb model
for a spindle speed range of n ∈ [30000, 32000] rpm.

Figure 4.18 gives the chatter stability boundary with and without control. It
can be seen that, as for the case with the linear actuator model, the controller
tailors the stability boundary such that a lobe is created at the desired spindle
speed range. Stability is ensured up to a depth of cut of ap,max = 2.663, which
leads to an improvement of approximately 239% compared to the case without
control.

Time-domain simulations are performed for the actual milling model with
the nonlinear bearing model, as presented in Section 2.5, using the reduced-
order controller while considering perturbation feedback (c = 1). The results
are shown in Figures 4.19 and 4.20 for n = 31000 rpm and ap = 2.0 mm.
Figure 4.19 gives the displacements at the tooltip in feed (x)- and normal (y)-
direction with and without control. Furthermore, the τ -sampled displacements
are shown by dots. It can be seen that without control, the amplitude of the
displacements becomes relatively large (approximately 35 % of the tool radius
which is chosen as 5 mm), which will result in the tool jumping in and out of
cut resulting in an inferior workpiece quality. For the case with control, the
motion is stable. This can be seen from the fact that the τ -sampled displace-
ments remain constant. The actuator input currents are given in Figure 4.20.
Due to the fact that perturbation feedback is applied, the (steady-state) actu-
ator current, after some transients at the start of the simulation, are (almost)
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Table 4.2: Parameters of the amb model, see [133].

Parameter Value Unit
kamb,x = kamb,y 1.2566 · 10−5 [Nm2/A2]

i0 2.5 [A]
v0 0.5 · 10−3 [m]
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Figure 4.18: Stability lobes diagram for reduced order controller designed a
range of spindle speeds, n ∈ [30000, 320000] and using the amb

model.

zero. From the results of the time-domain simulations, it can be seen that the
assumptions, for which the linear amb model is a good approximation of the
nonlinear amb model, as discussed in 2.5, remain valid.

4.6.3 Discussion of the results

Based on the results discussed in this section, it can be concluded that the
active chatter control design methodology, as proposed in this chapter, guar-
antees a priori stability for a pre-defined area of working-points. Such a strong
guarantee of a priori stability is not yet available in chatter control literature
for the milling process. Hereto, robust control techniques based on µ-synthesis
are employed, which allow additional uncertainties in the model to be taken
into account during controller design. Controllers obtained via D-K-iteration
tailor the closed-loop spindle dynamics (e.g. uncertain spindle dynamics) in
such a way that a resonance is situated near a tooth pass excitation frequency
of the desired (range of) spindle speeds. As a result, the mrr of the process can
be significantly increased in the desired range of operating points. Moreover,
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Figure 4.19: Displacements at the tooltip vt(t) for a time-domain simulation
performed for n = 31000 rpm and ap = 2 mm with and without
control using the nonlinear amb model. The controller is designed
for a spindle speed range of n ∈ [30000, 32000] rpm.
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Figure 4.20: Actuator input currents ic(t) for a time-domain simulation per-
formed for n = 31000 rpm and ap = 2 mm where perturbation
feedback is considered. The controller is designed for a spindle
speed range of n ∈ [30000, 32000] rpm.

by means of time-domain simulations, it is shown that the required actuator
forces, needed for stabilising the milling process, are zero in steady-state when
perturbation feedback is applied.
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4.7 Discussion

In this chapter, an active chatter control design methodology for the suppres-
sion of regenerative chatter in the high-speed milling process has been devel-
oped. The main purpose of the control design is the suppression of chatter
(i.e. stabilisation of the milling process) in an a priori specified range of process
parameters (spindle speed and depth of cut), such that working points of signif-
icantly higher productivity become feasible while avoiding undesirable chatter
vibrations. Herein, the requirement for a priori stability guarantee for a pre-
defined range of process parameters is cast into a robust stability requirement.
Moreover, a performance requirement is imposed on the control sensitivity in
order to limit the actuator forces. Existing chatter control strategies for the
milling process cannot provide such a strong guarantee of a priori stability for
a predefined range of working points. The control problem is solved via µ-
synthesis using D-K-iteration. The resulting controllers tailor the closed-loop
spindle dynamics in such a way that a resonance is situated near a tooth pass
excitation frequency of the desired (range of) spindle speeds which results in a
peak in the sld at the desired (range of) spindle speeds. In addition, it is shown
that the actuator forces, needed to stabilise the milling process, will be zero
in steady state in case of perturbation feedback (i.e. only chatter vibrations
are used as a feedback signal) whereas the actuator forces will be non-zero in
steady state in case of full output feedback. This result is exploited for a milling
model incorporating an active magnetic bearing model, where it is important
to limit the actuator input current in order to avoid actuator saturation.

Results, for illustrative examples, clearly illustrate the power of the pro-
posed control methodology. The chatter stability boundary is locally shaped
to stabilise the desired range of working points. This is contrary to the appli-
cation of active damping which lifts the sld over the entire spindle speed range
at the cost of high required levels of actuation energy. By means of illustrative
examples it is shown that this control strategy can render working points of
significantly higher productivity stable.
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5

Fixed structure active chatter control

design

5.1 Introduction

5.2 Fixed structure active chatter control design

5.3 Results

5.4 Discussion

5.1 Introduction

In the previous chapter, an active chatter control design methodology is pre-
sented that, by altering the machine dynamics, actively shapes the sld. The
control design procedure, based on µ-synthesis using a finite-dimensional time
invariant approximation of the milling model, results in relatively high-order
controllers due to the relatively high-order Padé approximation required to ac-
curately approximate the delay term in the desired spindle speed range. As
shown, the order of the controller can be reduced using closed-loop balanced
truncation techniques. However, in general, no guarantees can be given regard-
ing closed-loop stability and (robust) performance of the closed-loop system
with the reduced-order controller obtained in this fashion.

Therefore, in this chapter a fixed structure control design methodology for
time delay systems with structured uncertainties will be presented. More specif-
ically, a design methodology, that results in fixed structure active chatter con-
trollers for the milling process, is presented. The controller will be designed
using µ-synthesis techniques for an infinite-dimensional model of the milling
process, i.e. without approximation of the delay term in the milling model (as
was employed in Chapter 4). The resulting linear fixed-structure controller is
of fixed-order. Hence, the order of the controller can be directly imposed by
the user.

Fixed-structure or fixed-order controller synthesis is an ongoing research
field in the present day control engineering. It is desired to limit the complexity
of the controller, due to e.g. hardware limitations which limit the sampling
interval and the necessity for on-site tuning [105]. In general, a fixed-structure



102 Fixed structure active chatter control design

control problem cannot be transformed into a convex optimisation problem. In
[69], a model-based fixed-structure controller synthesis methodology based on
linear matrix inequalities is presented, which may lead to computational issues
for increasing complexity of the plant model. A fixed structure controller design
using a data-based approach is presented in [65]. In [9], a fixed-structure H∞

synthesis method for lti systems is developed which avoids the use of Lyapunov
techniques.

For time delay systems, results are often obtained using a Lyapunov-based
approach, see e.g. [10, 56, 61]. An advantage of the Lyapunov approach is
that it allows the incorporation of a more general class of uncertainties, such
as time-varying uncertainties. However, the resulting optimisation problems
are in the form of bi-linear matrix inequalities where the number of unknown
variables in general grows quadratically with the number of states [9] which
may lead to computational issues. Moreover, generally the application of a
Lyapunov approach leads to conservative results. The usage of an eigenvalue
based approach can overcome these disadvantages as explained in [109]. In
[162], the algorithm presented in [15] is applied to the stabilisation problem for
linear time-delay systems by tuning a finite number of controller parameters.
The approach, as outlined in this chapter, can be seen as an extension of the
work in [162] towards robust stabilisation of time-delay systems, for the case
of the high-speed milling process, with structured uncertainties.

The chapter is organised as follows. First, the problem statement will be
discussed in Section 5.2.1. Secondly, the generalised plant, for which the con-
trollers will be designed, is presented in Section 5.2.2. After that, the algo-
rithm for synthesising fixed structure active chatter controllers for the infinite-
dimensional model describing the milling process in the presence of uncertain-
ties will be presented in Section 5.2.3. In Section 5.3, the results of the fixed
structure controllers, designed for the high-speed milling process using rela-
tively simple models of the spindle-toolholder-tool dynamics, will be discussed.
Finally, a discussion of the presented results will be given in Section 5.4.

5.2 Fixed structure active chatter control de-

sign

In this section, the fixed structure active chatter control design procedure based
on an infinite-dimensional lti model of the milling process will be described.
First, the problem will be stated. Secondly, the generalised plant will be for-
mulated. Finally, the fixed structure active chatter control synthesis algorithm
will be presented.
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5.2.1 Problem statement

Consider the linearised time-invariant uncertain model of the milling process
with a linear actuator model, as derived in Section 4.4, given as follows:

˙̃x(t) = (A + apBtH̄Ct)x̃(t) − apBtH̄Ctx̃(t − τ) + BaKaĩc(t),

ṽa(t) = Cax̃(t).
(5.1)

with uncertainty sets ap ∈ [0, āp] and τ ∈ [τ , τ̄ ], respectively, for the depth of
cut and the delay. The aim of this chapter is to design a finite-dimensional
linear controller K with controller input y(t) = va(t) − cv∗a(t) as defined in

Section 4.3 and controller output ĩc(t), which guarantees:

• robust stability of x̃ = 0 for the given uncertainties in depth of cut ap

and time delay τ ;

• performance by minimising the H∞-norm of the control sensitivity KS,
where KS is the transfer function from an input r to controller output ĩc
(see also Figure 4.7 in Chapter 4).

Herewith, the actuator forces will be limited during the controller design, which
is an important practical performance requirement. As in Chapter 4, it is
assumed that the controller K has the following state-space description,

ξ̇(t) = Acξ(t) + Bcy(t),

ic(t) = Ccξ(t) + Dcy(t),
(5.2)

where Ac ∈ Rnc×nc , Bc ∈ Rnc×2, Cc ∈ R2×nc and Dc ∈ R2×2 with nc the
order of the controller.

5.2.2 Generalised plant formulation

In order to solve the problem stated in the previous section, i.e. in order to
design the fixed structure controller K which ensures robust stability and per-
formance of the milling process, the control problem is cast into the generalised
plant formulation. Figure 5.1 shows the schematic configuration employed in
this framework. The generalised plant P is a given system with three sets of
inputs and three sets of outputs. The signal pair p, q denote the in-/outputs
of the uncertainty channel. The signal r represents an external input in which
possible disturbances, measurement noise and reference inputs are stacked. The
signal ĩc is the control input. The output z can be considered as a performance
variable. In this case, z will be considered as the weighted control input, see
Figure 4.7 in Chapter 4, in order to limit the controller effort required for sta-
bilising the uncertain milling process. The output y, finally, is the measured
output, and is available for feedback. In general, the generalised plant P con-
tains a mathematical model of the plant to be controlled (i.e. the nominal plant,
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Figure 5.1: Generalised plant interconnection.

given by (5.1) with ap = 1
2 āp and τ = τ0, where τ0 = τ̄+τ

2 ) and one or more
weighting filters. These weighting filters are included in order to specify the
desired shapes of the closed-loop transfer function from r to z. The remainder
of this section describes the transformation of the uncertain plant (5.1) into
the generalised plant framework, whereas the next section presents the actual
optimisation problem for fixed structure controller design.

In Section 4.5, an elaborate discussion regarding modelling uncertainties in
the depth of cut ap and spindle speed n is given. In this chapter, the same
methodology for uncertainty modelling is followed. Hence, the uncertainty sets
as defined in Section 5.2.1 are given as follows:

ap = 1
2 āp(1 + δap

), τ = τ0 + δτ , (5.3)

where āp is the maximal depth of cut for which stable cutting is desired,
δap

∈ C, |δap
| ≤ 1 and δτ ∈ τ̄−τ

2 [−1, 1]. Moreover, in this case, the per-

formance output is chosen as the weighted control input z(s) = WKS(s)̃ic(s),
s ∈ C, where WKS is a stable weighting filter with the following state-space
realisation:

ẋKS(t) = AKSxKS(t) + BKS ĩc(t),

z(t) = CKSxKS(t) + DKS ĩc(t).
(5.4)

Substituting (5.3) in (5.1) and by adding the performance channel in-/output
to the system and rearranging terms, the state-space representation of the
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generalised plant P is given as follows:

ẋP (t) = AP,0xP (t) + AP,1xP (t − τ0) + BP





q(t)
r(t)

ĩc(t)









p(t)
z(t)
y(t)



 = CP,0xP (t) + CP,1xP (t − τ0) + DP





q(t)
r(t)

ĩc(t)





(5.5)

with the state vector xP (t) = [x̃T (t) xT
KS(t)]T and the uncertainty channel

input p(t) and output q(t) are defined as

p(t) = [pT
1
(t) pT

2
(t)]T , q(t) = [qT

1
(t) qT

2
(t)]T .

Using the decomposition of p(t) and q(t) as defined above, the state-space
matrices of the generalised plant are defined as follows:

AP,0 =

[
A0 0

0 AKS

]

, (5.6)

AP,1 =

[
A1 0

0 0

]

, (5.7)

BP =

[
− 1

2 āpBtH̄ BtH̄ 0 B̄a

0 0 0 BKS

]

, (5.8)

CP,0 =







0 0
1
2 āpCt 0

0 CKS

Ca 0







, (5.9)

CP,1 =







Ct 0

− 1
2 āpCt 0

0 0

0 0







, (5.10)

DP =







0 0 0 0

− 1
2 āpI 0 0 0

0 0 0 DKS

0 0 I 0







, (5.11)

where A0 := A + 1
2 āpBtH̄Ct, A1 := − 1

2 āpBtH̄Ct and B̄a := BaKa. In the
following discussion also the transfer function description of the generalised
plant will be used. The transfer function description of the generalised plant
P is given as follows:

P(s) =
(
CP,0 + CP,1e

−sτ0

) [
sI− AP,0 − AP,1e

−sτ0

]−1
BP + DP , (5.12)
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s ∈ C. The (structured) uncertainty channel is then given as follows:

q
1
(t) = (Dδτ

− 1) p
1
(t),

q
2
(t) = δap

p
2
(t),

(5.13)

where the operator Dτ is defined as Dτx(t) = x(t − τ). Let ∆(s) denote the
Laplace transform of the uncertainty term (5.13), such that q(s) = ∆(s)p(s)
with

∆(s) =

[
(e−sδτ − 1)I2 0

0 δap
I2

]

. (5.14)

with identity matrix In ∈ Rn×n. Based on the definition of the generalised
plant P, as given above, it can be seen that the control problem at hand is a
robust performance problem. The problem is to find a controller K, as in (5.2),
such that the H∞ norm of the performance channel (i.e. the transfer function
from r to z ) with the controller in closed-loop, becomes smaller than 1, for all
allowed uncertainties ∆. As discussed in Section 4.5.6 and [181], the robust
performance problem can be transformed into a robust stability problem by
adding an extra uncertainty block ∆P ∈ C2×2, ‖∆P‖∞ ≤ 1, associated with
the performance channel, to the problem. A block diagram interpretation of the
transformation can be found in [142, p. 318]. The newly obtained uncertainty
block is then given as follows:

∆̂ =

[
∆ 0

0 ∆P

]

. (5.15)

Then robust stability can be tested by computing the structured singular value
of the interconnection of the generalised plant P and controller K, denoted by
N, with respect to the expanded uncertainty set ∆̂, i.e.

sup
ω∈R

µ∆̂(N(iω)) < 1. (5.16)

Herein, N is defined as the lower fractional transformation between P and K.
Consider the following decomposition of the generalised plant P:

P =

[
P11 P12

P21 P22

]

. (5.17)

Then the lower fractional transformation between P and K, i.e. Fl(P,K), is
defined as follows:

N := Fl(P,K) = P11 + P12K(I− P22K)−1P21. (5.18)

However, as can be seen from the definition of the uncertainty, given in the
Laplace domain in (5.14), the term e−sδτ −1 depends on s ∈ C. As illustrated in
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Section 4.5.3.2, the delay uncertainty e−sδτ −1 can be upperbounded by a (non-
rational) frequency-dependent upper bound κ(iω), which is over-approximated
by a frequency-dependent norm-bounded rational transfer function ρ1(s)I2 with
state-space realisation:

ẋρ(t) = Aρxρ(t) + Bρq̄1
(t),

q
1
(t) = Cρxρ(t) + Dρq̄1

(t).
(5.19)

Or stated differently:

|e−iωδτ − 1| ≤ κ(iω) ≤ |ρ1(iω)|, ∀δτ ∈ [τ − τ0, τ̄ − τ0]. (5.20)

Then, the robust performance requirement given by (5.16) can be refined by
applying the small-µ theorem as presented in [155]. As before, assume that N

is internally stable, then for all ‖∆̂‖∞ ≤ 1 the interconnection Fu(N, ∆̂) is
well-posed, internally stable and ‖Fu(N, ∆̂)‖∞ < 1 if and only if

sup
ω∈R

µ
∆̂

(
L(iω)N(iω)

)
< 1, (5.21)

where

L(iω) = diag
(
ρ1(iω)I2, I2, I2

)
, (5.22)

and

∆̂ = L−1∆̂. (5.23)

Using the robust stability test in (5.21), instead of (5.16), will in general lead
to less conservative results, due to the fact that the upper bound on the de-
lay is explicitly taken into account in the generalised plant formulation. The
statements above define the tools to evaluate robust performance using robust
stability analysis.

5.2.3 Fixed structure controller synthesis

Based on the discussion in the previous section, it becomes clear that the
design of a controller guaranteeing robust performance requires the following
optimisation problem to be solved:

min
K

sup
ω∈R

µ∆̂

(
LN

)
,

subject to Ψ(K) < 0,
(5.24)

with L as in (5.22), P the generalised plant, given in transfer function matrix
description in (5.12), K the controller to be designed, and Ψ(K) the spectral
abscissa function of the closed-loop system defined as:

Ψ(K) := sup{Re(λ) : det(λI − Ā0 − Ā1e
−λτ0) = 0}, (5.25)
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where

Ā0 =

[
A + 1

2 āpBtH̄Ct 0

0 0

]

+

[
B̄a 0

0 I

] [
Dc Cc

Bc Ac

] [
Ca 0

0 I

]

,

Ā1 =

[
− 1

2 āpBtH̄Ct 0

0 0

]

.

The constraint on the objective function, defined above, is a necessary condition
to guarantee the existence of the H∞-norm of N along with stability of the
closed-loop feedback system, see also [181].

The robust performance requirement in (5.21) is satisfied when the objective
function becomes smaller than one. As described in the previous chapter, it
is in general difficult to calculate µ∆̂. However, an upper bound on µ∆̂ can

be obtained by calculating the scaled H∞ norm of
(
LN

)
[181]. Since the

uncertainties are modelled by complex uncertainties see (5.15) and (5.14), as
described in the previous chapter, a reasonable approach to solve the problem
is to apply D-K-iteration, see [181]. Hereby, the optimisation problem is given
as follows:

min
K

inf
D∈H∞

‖DLND−1‖∞,

subject to Ψ(K) < 0,
(5.26)

which is iteratively solved for K and D. Herein,

‖DLND−1‖∞ = sup
ω∈R

σ̄
(
D(iω)L(iω)N(iω)D(iω)−1

)
,

H∞ denotes the set of functions that are analytic and bounded in the open
right half plane, and, the structure of D is chosen such that D commutes with
the uncertainty set ∆̂, i.e. satisfy D∆̂ = ∆̂D. See e.g. [117] for more detail on
the computation of lower and upper bounds on the complex structured singular
value. For a given K, the problem of finding the scaling matrix D can be turned
into convex optimisation problem which is generally solved pointwise in the
frequency domain (e.g. by using the mussv command from the Robust Control
Toolbox of Matlab [107], which uses the algorithm presented in [179]). Since
in this chapter fixed structure controllers are considered, the problem of finding
K, for a given D, in general results in a nonconvex, nonsmooth, constrained
optimisation problem, given as follows:

min
K

f(K),

subject to Ψ(K) < 0.
(5.27)

with

f(K) := sup
ω∈R

σ̄
(
D(iω)L(iω)Fl(P(iω),K(iω))D(iω)−1

)
. (5.28)
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The nonsmooth dependence of the objective function (5.27) on the controller
parameters of K typically occurs when the maximum of the objective function
is located at two (or more) different frequencies. Due to the nonsmoothness of
(5.27), standard optimisation algorithms cannot be used to determine the pa-
rameters of controller K, since they tend to chatter about a nonsmooth surface.
Instead, nonsmooth optimisation techniques, based on bundle methods, will be
used. Bundle methods, see [68, 173], collect a number ng of subgradients,

∇f(Kp,i), Kp,i ∈ Kp + ǫsB, i ∈ {1, ng}, (5.29)

to find an approximate for the Clarke subdifferential ∂f(Kp), defined as [25]

∂f(Kp) = conv{ lim
j→∞

∇f(Kp,j) : Kp,j → Kp,∇f(Kp,j) exists}, (5.30)

where conv(Q) denotes the convex hull of Q. Herein, with a slight abuse of no-
tation, Kp ∈ RnK represents the parameter vector describing the controller K,
with nK the number of controller parameters, ǫs > 0 and B the nK-dimensional
open unit ball. Note that, when the function f(Kp) is smooth, the subdif-
ferential ∂f(Kp) reduces to the gradient ∇f(Kp). Using bundle methods, an

approximate ∂̄f(Kp) for the Clarke subdifferential ∂f(Kp) will be constructed.

The key idea behind bundle methods is that the continuous objective func-
tion is differentiable almost everywhere. Burke et al. [15] present a gradient
bundle method, called gradient sampling, where the user specifies, for given
controller parameters Kp, the objective function f(Kp) in (5.27) and the gra-
dient (∇f(Kp)) at the parameter value Kp, when the objective function is
differentiable at Kp. In this way, the user only has to specify one subgradient
instead of the entire subdifferential, which is in general a difficult task. The
gradient ∇f(Kp) can either be determined analytically or numerically, e.g. us-
ing finite difference techniques [115]. Here, the gradient ∇f(Kp) is determined
using finite difference techniques as this appeared more robust as opposed to an
analytically determined gradient. At each iteration, the gradient of the objec-
tive function is determined for ng randomly generated values for the parameters
characterising the state-space realisation of the controller, within sampling ra-
dius ǫs, of the current evaluation point. Denote the collection of the gradients
by Gd, defined as,

Gd =
[
∇f(Kp,ǫs,1),∇f(Kp,ǫs,2), . . . ,∇f(Kp,ǫs,ng

)
]

(5.31)

with Kp,ǫs,i = Kp + ǫsBi, i = 1, . . . , ng, where the vectors B1, B2, . . . , Bng
are

sampled independently and uniformly from B and ng the number of sampled
gradients. The approximate subdifferential ∂̄f(Kp) is then obtained as follows:

∂̄f(Kp) = conv(Gd). (5.32)
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Based on the bundled gradients a local descent direction d is determined, where
−d is the convex combination of the sampled gradients whose 2-norm, i.e. ‖d‖2

is minimised [14]. This leads to solving the following (constrained) quadratic
program:

min
α

αTGT
d Gdα,

subject to
ng∑

i=1

αi = 1.

αi ≥ 0,

(5.33)

where α =
[
α1, α2, . . . , αng

]T
. The descent direction is then obtained as d =

−Gdα. In this way, when the optimisation approaches a nonsmooth manifold,
in which e.g. a steepest descent based algorithm will jam, the bundle algorithm
is able to use the information from both sides of the nonsmooth manifold to
turn the corner and make progress towards the minimiser [14].

The gradient sampling algorithm, can be used to locally minimise the non-
smooth, nonconvex objective functions. In general, the gradient sampling al-
gorithm is quite expensive per iteration. Therefore, Lewis and Overton have
developed a hybrid algorithm for nonsmooth optimisation (hanso) [93]. First,
the bfgs method (named after its inventors Broyden, Fletcher, Goldfarb, and
Shannon), a quasi-Newton algorithm, with an inexact line search algorithm
based on weak Wolfe conditions is employed (see [115] for detail on bfgs and
line search methods). When the bfgs algorithm finds a minimiser (i.e. when
the norm of descent direction ‖d‖2 becomes smaller than a pre-defined toler-
ance dtol), the optimisation is stopped. In the event that, at a certain iteration,
the Wolfe conditions are not satisfied, which indicates that the optimisation
is near a nonsmooth manifold, the gradient sampling algorithm is employed
where the sampling radius is adaptively reduced, see [15]. The details of the
algorithm are listed below, when the full algorithm of finding fixed structure
controllers for the considered time delay system with structured uncertainties
is discussed.

The hybrid optimisation algorithm hanso, as discussed above, is in gen-
eral applied to finite-dimensional systems with continuous objective functions.
However, as shown in [109, Chp. 9], the H∞-norm of a system with time-delay
exhibits continuity properties and is differentiable almost everywhere which
allows the application of hanso for the present system.

From (5.27), it can be seen that the problem of finding a fixed structure
controller which guarantees robust performance of the milling process is ac-
tually a constrained optimisation problem. However, hanso is only able to
deal with unconstrained optimisation problems. The constrained optimisation
problem can, however, be converted to an unconstrained optimisation problem
using a penalty method, see [99]. An alternative method would be to e.g. use
a barrier method. An advantage of the application of a barrier method is that
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the parameters will never leave the feasible set of parameters (i.e. the set of
parameters for which the constraint is satisfied). However, an important aspect
of the fixed-order controller synthesis procedure is the choice of the initial con-
troller parameters. Starting values for the fixed-structured controller synthesis
procedure can be generated by considering reduced-order controllers obtained
via the (full-order) controller-synthesis procedure from Chapter 4. In general
no guarantees can be given regarding closed-loop stability of the closed-loop
system for the reduced-order controller. Then, it may happen that the initial
starting parameters lie outside the feasible set. A penalty function approach
is able to deal with this situation. The constrained objective function (5.27) is
replaced with the following unconstrained (nonsmooth) objective function:

min
K

f̄(Kp), (5.34)

where f̄(Kp) = f(Kp) + γ max
(
0, Ψ(Kp)

)
, where again a slight abuse of no-

tation is introduced, and γ is a positive constant. The value of γ is in general
iteratively chosen, see [115] for rules on how to choose γ.

During an optimisation step, in order to evaluate the objective function
(5.34) for given K and D, the (scaled) H∞-norm of DLFl(P,K)D−1 as well as
spectral abscissa Ψ(Kp), defined in (5.25), need to be calculated. Since, in this
case, the system is infinite-dimensional (due to the presence of the time-delay),
the standard Hamiltonian approach to calculate the H∞-norm, as presented in
[13], cannot be used. Recently, in [62] a method is presented to compute the
H∞-norm of a stable time-delay system with transfer function representation

G(s) = C
(
sI − A0 − A1e

−sτ
)−1

B + D. (5.35)

Unfortunately, as can be seen from (5.12), the transfer function description of
the generalised plant is not in the form of (5.35). Hence, here the H∞-norm will
be determined by calculating the singular values of D(iω)L(iω)Fl(P(iω),K(iω))

D(iω)−1 pointwise across a grid of frequencies ω =
[
ω1, ω2, . . . , ωN

]T
. The

spectral abscissa is determined using the DDE-BIFTOOL [44] software pack-
age, which can be used to determine the right-most characteristic roots of a
lti system with time-delays. More information about computation of charac-
teristic roots for time-delay systems can be found in [109].

Based on the discussion above, the following algorithm is presented to solve
the fixed structure robust control synthesis problem for lti time-delay systems
with structured uncertainties.

Algorithm 5.1:

Given D = I, Kp = K0
p, with K0

p the initial vector of controller parameters, a

positive constant γ and frequency grid vector ω =
[
ω1, ω2, . . . , ωN

]T
:

1. Find minimiser K∗

p which leads to the controller K∗ to minimise the

nonsmooth objective function f̄(Kp):
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a. run the bfgs algorithm with inexact line search algorithm starting
from Kp = K0

p;

b. if ‖d‖2 < dtol then

continue to step 2,
else

if inexact line search fails then

continue to step c.
end if

end if

c. initialise the gradient sampling algorithm by starting with the con-
troller parameters Kp obtained from bfgs and choose a sampling
radius ǫs and set the counter giter = 0 in combination with the
desired number of gradient sampling reduction steps gmax;

d. Compute ng gradients ∇f̄(Kp,ǫs,i), Kp,ǫs,i =Kp+ǫsBi, i=1, . . . , ng,
where B1, B2, . . . , Bng

are sampled independently and uniformly
from B;

e. compute descent direction d = − argmin{‖d‖2 : d ∈ ∂̄f̄(Kp)}, with

∂̄f̄(Kp) = conv
(
[∇f̄(Kp,ǫs,1),∇f̄(Kp,ǫs,2), . . . ,∇f̄(Kp,ǫs,ng

)]
)
;

f. determine step length t by applying the inexact line search algo-
rithm with weak Wolfe conditions and update the controller pa-
rameter vector via Ki+1

p = Ki
p + td;

g. if ‖d‖2 > dtol then

go back to step d,
else

if ‖d‖2 < dtol and giter = gmax then

continue to step 2,
else

reduce the sampling radius by setting ǫs = 0.1ǫs and increase
the counter giter, giter = giter + 1 and return to step d

end if

end if

2. Determine minimiser D∗ to minimise σ̄
(
DLFl(P,K∗)D−1

)
pointwise

across frequency vector ω;

3. Calculate approximate maxima on µ∆̂ by substituting D∗ and K∗ into

(5.34) and evaluate for the given frequency grid ω;

4. Correct approximate maxima on µ∆̂ using local optimisation strategy to
find ω∗ such that:
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sup
ω∈R

σ̄
(
D∗(iω)L(iω)N∗(iω)D∗−1(iω)

)

= σ̄
(
D∗(iω∗)L(iω∗)N∗(iω∗)D∗−1(iω∗)

)
,

with N∗ = Fl(P,K∗);

5. Stop when supω∈R µ∆̂ = 1. If supω∈R µ∆̂ 6= 1 compare supω∈R µ∆̂ with
previous obtained bound and stop when difference becomes smaller than
user-defined tolerance, otherwise set D = D∗ and return to step 1.

The local optimisation strategy in step 4 of the algorithm presented above,
corrects the upper bound on the structured singular value for a fixed controller
K for the frequency grid ω. The optimisation strategy tries to find a local
maximum of the (scaled) largest singular value by adjusting the scaling function
D for a fixed controller K. The optimisation problem is solved using the bfgs

quasi-Newton implementation in the fminunc command from the optimisation
toolbox in Matlab.

5.3 Results

In this section, the results of the application of the fixed structure control syn-
thesis algorithm, presented in the previous section, to the robust chatter control
problem will be presented. Firstly, the static output feedback case will be con-
sidered in Section 5.3.1. Secondly, dynamic output feedback controllers will be
designed in Section 5.3.2. The parameters of the milling model, considered in
this section, are given in Table 4.1.

5.3.1 Static output feedback

In this section, a static output feedback controller (nc = 0, in (5.2)) will be
designed for the uncertain time-delay system (5.1). Moreover, a linear cutting
model is considered (i.e. xF = 1). A static output feedback can also be realised
using a passive control strategy. However, the goal of this section is to illus-
trate the working principle of the fixed-structure control design approach. The
structure of the controller matrix is chosen such that it has a similar structure
as the averaged cutting force matrix H̄ which can be written as the sum of
a diagonal matrix kI and a skew-symmetric matrix for a linear cutting model
with full immersion cutting, see [5, page 107]. Then, the controller matrix is
assumed to have a similar structure as the averaged cutting force matrix H̄

and therewith only two controller parameters need to be synthesised, i.e. the
controller matrix structure is given as

K = Dc =

[
k1 −k2

k2 k1

]

, (5.36)
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with the unknown controller parameter vector Kp =
[
k1 k2

]T
. In this way

the computational effort of the controller synthesis is reduced. Moreover, it
allows for a graphical representation of the results.

The static output feedback controller is designed such that it stabilises
milling operations between n ∈ [36000, 38000] rpm, for a depth of cut which is
as large as possible given the performance requirement on the control sensitivity
KS as defined in Section 4.5.4, with a static performance weighting WKS = Kp,
where Kp = 1 · 10−6 mm/N. Moreover, the parameter of the penalty function
is set to γ = 100 and the initial sampling radius ǫs = 0.1.

Starting at the initial controller parameters k1 = k2 = 0, the fixed struc-
ture controller synthesis algorithm, as presented in Section 5.2.3, solves the con-
strained optimisation problem (5.27) by iterating over D and K. The algorithm
converges after three D-K steps resulting in sup

ω∈R

σ̄
(
D(iω)L(iω)N(iω)D−1(iω)

)
=

0.9911 therewith guaranteeing robust performance for milling operations be-
tween n ∈ [36000, 38000] rpm up to a depth of cut of āp = 2.4375 mm.

In Figure 5.2(a), the values of the objective function during the K-step,
i.e. supω∈R σ̄

(
DlLND−1

l

)
+ γ max

(
0, Ψ(K)

)
with l = 1, 2, 3 the index of the

corresponding D-scale matrices Dl, are given as function of iteration number.
Moreover, the evolution of the feedback gains k1 and k2 during the K-steps
are given in Figure 5.2(b). The obtained feedback gains that guarantee robust
performance of the the milling process for the desired uncertainties are given
as

k1 = 10072.7 N/mm,

k2 = −24.70908 N/mm,

from which it can be seen that the controller parameters are smaller than the
inverse of the bound W−1

KS posed on the control sensitivity KS. A contour plot
of the objective function (5.34) for D = I is given in Figure 5.3. Moreover,
the path of controller synthesis (in the first K optimisation step, i.e. l = 1)
is given in the feedback gain parameter space. It can be seen that the opti-
misation moves towards the (local) minimum of the objective function for the
given D-scaling. In Figure 5.4, a contour plot is depicted where the upper
bound on supω∈R µ∆̂

(
L(iω)N(iω)

)
is calculated for several values of k1 and k2.

Moreover, the path of the fixed structure controller synthesis algorithm in the
feedback gain parameter space is given, where the end point of each K-step in
the D-K-iteration process are indicated by a circle. From the contour plot, it
can be seen that the during the D-K-iteration the optimisation converges to a
(local) minimum thereby guaranteeing robust performance of the milling pro-
cess. During the second D-K-step the optimisation moves along a nonsmooth
boundary of the objective function. In the same figure, the evaluation of the
objective function by using the default bfgs algorithm for smooth functions
(see [115, Chp. 6], invoked using fminunc from Matlab) is given in grey. It
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Figure 5.2: Objective function in K-step of algorithm (left) and feedback gains
k1 and k2 (right) as a function of iteration number.
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Figure 5.3: Contour plot of objective function (5.34) for fixed D-scales D = I,
γ = 100 together with optimisation result during the first K-step of
the algorithm. The circle indicates the parameter values obtained
at the end of the first K-step.

can be seen that the standard bfgs algorithm gets stuck exactly at a non-
smooth boundary of the objective function (A nonsmooth boundary can be
distinguished from the nonsmoothness of a contour).

In Figure 5.5, the frequency response functions of open-loop and closed-loop
tooltip dynamics are given. The closed-loop tooltip dynamics are determined
using the static-output feedback controller as determined in the present section.
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It can be seen that the static-output controller alters the tooltip dynamics such
that the first resonance in the tooltip dynamics is shifted to a lower frequency
range. The second resonance is altered such that it lies inside the area of desired
tooth passing excitation frequencies, which is beneficial for stability as will be
illustrated below and also has been discussed in the results of the previous
chapter.

Next, slds are determined for the original linearised time-variant model of
the milling process (Eq. (4.2)), as outlined in Section 2.7, with and without
the static output controller. The sld is given in Figure 5.6. It can be seen
that the controller synthesis algorithm has created a peak in the sld exactly
at the desired spindle speed range. In this case, this is realised by altering
the closed-loop spindle dynamics, as presented above, such that the second
resonance, which lies in the desired range of spindle speeds, becomes dominant
for chatter in the desired range of spindle speeds. For the open-loop sld, the
first resonance limits the maximum achievable depth of cut for spindle speeds
above approximately n = 33000 rpm. Using the static output feedback con-
troller the depth of cut, in the considered spindle speed range, can be increased
from ap,max = 1.595 mm to ap,max = 3.042 mm (āp = 2.4375 mm) which is an
increase of more than 90%. Based on the discussion above, it can be concluded
that the proposed controller synthesis strategy is able to effectively alter the
sld such that productivity is significantly increased. This is even accomplished
for the least number of controller parameters. In the next section, fixed struc-
ture controllers will be synthesised using dynamic output feedback controllers.
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Figure 5.5: Controlled Gtt,c(iω) (solid) and uncontrolled (open-loop) Gtt(iω)
(dashed) tooltip spindle dynamics for the static-output controller
designed for a range of spindle speeds, n ∈ [36000, 38000] rpm.
The interval of tooth passing excitation frequencies corresponding
to the spindle speed range is indicated by the grey area.
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Figure 5.6: Stability lobes diagram with and without static output feedback
controller.

5.3.2 Dynamic output feedback

The previous section illustrated the working principle of the proposed controller
design method using a static output feedback controller with two controller pa-
rameters. In this section, the results will be presented by synthesising dynamic
output controllers as defined by (5.2) for xF < 1.

The dynamic output feedback controller will be designed such that milling
operations between n ∈ [34000, 36000] rpm are stabilised, for a depth of cut
which is as large as possible given the performance requirement on the con-
trol sensitivity KS as given defined in Section 4.5.4. Here, the performance
weighting WKS is chosen similarly as in the previous chapter, i.e.

WKS(s) = Kp

1
2πfr,l

s + 1

1
2πfp,l

s + 1
·

1
2πfr,h

s + 1

1
2πfp,h

s + 1
, (5.37)

with Kp = 1 · 10−6 mm/N, fr,l = 100 Hz, fr,h = 7500 Hz, fp,l = 1 · 10−2 Hz
and fp,h = 2 · 104 Hz. As before, the parameter of the penalty function is set
to γ = 100 and the initial sampling radius is chosen as ǫs = 0.1.

As the controller synthesis problem at hand is in general a nonconvex prob-
lem, an important aspect of the fixed-order controller synthesis procedure is the
choice of the initial controller parameters K0

p describing the initial controller
transfer matrix K0. Here, the initial controller parameters will be based on
the reduced controller obtained via the (full-order) µ-synthesis procedure as
presented in Chapter 4.

In order to reduce the number of optimisation variables (i.e. controller pa-
rameters), the initial controller, obtained by reducing a full-order controller de-
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Table 5.1: Results from fixed structure controller synthesis for three different
controller orders, āp denotes the maximal depth of cut for which
robust performance can be guaranteed, ap,max denotes the maximal
depth of cut in the sld for desire spindle speed interval.

nc [-] µ∆̂ [-] āp [mm] ap,max

0 0.9816 1.1875 1.845
2 0.9809 2.0469 2.579
4 0.9865 2.25 2.805

termined using the µ-synthesis procedure from Chapter 4, is transformed to the
modal canonical form (herewith the system matrix Ac of the reduced-order con-
troller has the real Jordan form). After the transformation the controller’s sys-
tem matrix Ac is a block diagonal matrix, i.e. Ac = diag(Ac,1, . . . ,Ac,nC/2+nR

),
with nC the number of complex eigenvalues and nR the number of real eigen-
values, and

Ac,l = λl, for λl ∈ R, (5.38)

and

Ac,l =

[
Re(λl) Im(λl)
−Im(λl) Re(λl)

]

, for λl ∈ C, (5.39)

where λl is the solution of det(λlI−Ac) = 0. Note that in this case it is assumed
that the eigenvalues have algebraic multiplicity one. Three fixed structure
controllers are synthesised, namely for nc = 0 (i.e. static-output feedback),
nc = 2 and nc = 4, using the algorithm as presented in Section 5.2.3. The
algorithm has to optimise 4 parameters in case of nc = 0, 16 parameters in
case of nc = 2 and 28 parameters in case of nc = 4. The results after five D-K-
steps are listed in Table 5.1. As before, slds are computed with the obtained
fixed structure controllers and without control using the linearised time-variant
model of the milling process (Equation (4.2)), as outlined in Section 2.7. The
corresponding results are given in Figure 5.7. For completeness, the maximal
achievable depth of cut ap,max from the sld in the desired spindle speed range is
listed in Table 5.1. From the figure, it can be seen that for the case where nc = 0
the fixed structure controller indeed alters the sld. The peak of the lobe is
approximately located at n = 37000 rpm, which is outside the domain of desired
spindle speeds. In this case, based on the sld, the depth of cut can be increased
from ap,max = 1.067 mm to 1.845 mm which is a gain of approximately 73%.
In order to shift the peak of the lobe to another spindle speed, the controller
needs to have more complexity (freedom), which is obtained by increasing the
controller order. For the dynamic fixed structure controllers with nc = 2
and nc = 4 it can be seen that the sld is altered such that a lobe is created
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at the desired spindle speed interval. It can be seen that by increasing the
order of the fixed structure controller, the area for which robust stability is
guaranteed is increased. In this case, based on the sld, the depth of cut
can be increased from ap,max = 1.067 mm to ap,max = 2.579 for nc = 2 and
to ap,max = 2.805 for nc = 4, which leads to an increase of approximately
142% and 163%, respectively. The obtained depth of cut āp for which robust
performance can be guaranteed is smaller for the fixed structure controller as
compared to the higher-order controller designed using the approach outlined
in Chapter 4. This is as expected since less parameters are available to tune for
the fixed structure controller. On the contrary, the fixed structure controller
synthesis is based on the model of the milling process without the necessity of
a high-order approximation of the time delay.

The resulting fixed structure controllers are given in Figure 5.8. From the
figure, it can be seen that the controllers designed for nc = 2 and nc = 4
are dynamic mimo controllers with notch characteristics, which show similar
behaviour as the controllers obtained using the µ-synthesis procedure exploited
in Chapter 4.

The closed-loop tooltip dynamics in both x- and y-direction are given in
Figure 5.9. In the same figure, the interval of tooth passing excitation frequen-
cies ftpe associated with the spindle speed interval n ∈ [34000, 36000] rpm is
indicated. It can be seen that the controller, designed for nc = 0, is unable to
shift the second resonance into the frequency range of desired tooth passing ex-
citation frequencies. As described above, this is due to the limited complexity
of the controller. For the dynamic fixed structure controllers with nc = 2 and
nc = 4 it can be seen that the controllers alter the closed-loop tooltip spindle
dynamics such that the second resonance is shifted such that it is located inside
the desired uncertainty range of ftpe.

5.4 Discussion

This chapter presented a methodology to directly synthesise fixed structure
controllers which guarantee robust stability and performance of the high-speed
milling process (i.e. the avoidance of chatter in a predefined area of depth of cut
ap and spindle speed n). It is shown that the resulting optimisation problem is
a nonsmooth constrained optimisation problem which can be transformed to an
unconstrained nonsmooth optimisation problem using a penalty function. The
unconstrained optimisation problem is solved using D-K-iteration. The K-step
is solved by utilising a dedicated nonsmooth optimisation algorithm based on
bundle methods. An important aspect of the fixed-order controller synthesis
procedure is the choice of the initial controller parameters. Starting values for
the fixed-structured controller synthesis procedure can be generated by consid-
ering reduced-order controllers obtained via the (full-order) controller-synthesis
procedure from Chapter 4. From the results, it can be seen that it is possi-
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ble to synthesise fixed structure controllers for the high-speed milling process
that guarantee robust stability (i.e. avoidance of chatter) for given ranges of the
depth of cut and spindle speed. This leads to a slight performance degradation,
in terms of achievable maximum depth of cut āp for which robust performance
can be guaranteed, as compared to the procedure presented in Chapter 4. How-
ever, with the approach as presented in this chapter it is possible to synthesis
controllers for systems with a time-delay without the necessity of a (possibly)
high-order approximation of the delay term. From the perspective of practical
implementation, it is clearly desirable to be able to design relatively low-order
controllers guaranteeing robust chatter-free machining.
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Figure 5.9: Controlled Gtt,c(iω) and uncontrolled Gtt(iω) tooltip spindle dy-
namics in x- and y-direction for fixed structure controller for nc = 0,
nc = 2 and nc = 4 states designed for a spindle speed interval
n ∈ [34000, 36000] rpm. The interval of tooth passing excitation
frequencies corresponding to the spindle speed range is indicated
by the grey area.
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Active chatter control: experimental

results

6.1 Introduction

6.2 Experimental Setup

6.3 Identification of the experimental setup

6.4 Controller design

6.5 Closed-loop model-based stability analysis

6.6 Experimental results

6.7 Discussion

6.1 Introduction

In Chapters 4 and 5, an active chatter controller design methodology has been
presented which shapes the stability lobes diagram (sld) such that a pre-
defined domain of working points in terms of spindle speed n and depth of
cut ap is stabilised. The main goal of this chapter is to illustrate the working
principle of the active chatter control procedure in practice. Hereto, the ac-
tive chatter control strategy, as presented in Chapter 4, will be used to design
controllers for an actual high-speed milling spindle which is equipped with an
active magnetic bearing (amb). The controller designs in Chapters 4 and 5 are
based on relatively simple models of the spindle dynamics. In reality, however,
the models of the spindle dynamics will be rather complex (see e.g. [19, 94]).
It will be shown that it is possible to apply the active control strategy to more
complex models of the spindle-actuator dynamics. As a consequence of the
higher complexity of the model of the spindle dynamics, the controllers will be
more complex (i.e. of higher order) and should be implemented in a real-time
control environment with a relatively high sampling frequency. Moreover, there

The experiments that will be presented in this chapter are performed in close-cooperation
with the Institut für Produktionsmanagement, Technologie und Werkzeugmaschinen (ptw)
of the Technische Universität Darmstadt, Germany, and, more specifically Prof. Dr.-Ing.
Eberhard Abele and Dipl.-Ing. Andreas Schiffler.
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will be a difference between the actual spindle-actuator dynamics and the iden-
tified model of the setup. This implies that uncertainties need to be included
in the spindle-actuator model in order to accurately describe the experimental
setup which may deteriorate the attainable performance of the controller de-
sign. These challenges will be faced in this chapter while applying the developed
controller design methodology in practice.

The experimental setup that will be considered in the present chapter will
be presented in Section 6.2. In Section 6.3, parameters of the cutting force
model and a model of the spindle-actuator dynamics will be determined exper-
imentally. Moreover, an uncertainty model for the spindle-actuator dynamics
will be derived and the sld without control will be presented. Then, using the
obtained (uncertain) model of the experimental setup, two different controllers
will designed in Section 6.4. Based on a closed-loop model-based stability anal-
ysis, results using the obtained controllers in combination with the model of the
experimental setup will be discussed in Section 6.5. Next, actual closed-loop
milling operations will be presented with the designed controllers in Section
6.6. Finally, a discussion regarding the obtained experimental results will be
presented in Section 6.7.

6.2 Experimental Setup

As described above, in this chapter controllers will be designed for an actual
high-speed milling spindle which is equipped with an amb. The experimental
setup, which will be used throughout this chapter, is designed and realised at
the Institut für Produktionsmanagement, Technologie und Werkzeugmaschinen
(ptw) of the Technische Universität Darmstadt, Germany. In Figure 6.1, a
photo and schematic overview of the spindle with integrated amb can be found.
It can be seen that the active magnetic bearing is integrated in the spindle and
is placed between the front bearings and the toolholder. In this way, the setup
can serve as a testbed for a proof of principle in order to test the active chatter
control strategy in practice. The specifications of the spindle and amb, taken
from [82], are listed in Table 6.1. The same spindle with integrated amb has
been used in [82] for chatter control using active damping techniques.

6.3 Identification of the experimental setup

The active chatter control synthesis procedure, presented in Chapter 4, is a
model-based controller design procedure. Hence, a model of the experimental
setup is required for the purpose of controller design. First, the parameters
of the cutting force model will be identified. Secondly, a parametric model of
the spindle and actuator dynamics will be determined experimentally. Thirdly,
uncertainties in the spindle dynamics will be modelled. Finally, the sld of the
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(a) Photo.
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Eddy current sensors

Magnetic bearing Stator/Rotor
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Motor cooling

Bearing cooling
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(b) Schematic representation.

Figure 6.1: The experimental setup. An active magnetic bearing (amb) is inte-
grated into a machine spindle between the front bearings and tool-
holder connection. Source: Institut für Produktionsmanagement,
Technologie und Werkzeugmaschinen (ptw), Technische Univer-
sität Darmstadt, Germany.

experimental setup will be determined through dedicated milling experiments
as well as using the obtained model.
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Table 6.1: Specifications of the experimental setup.

Spindle
max. Power 80 kW
max. spindle speed 24000 rpm

amb

number of poles 8
nominal airgap 0.4 mm
pre-magnetising current 5 A
max. input current 10 A
max. static force 600 N
Bandwidth current controller 1000 Hz

xy

z

tool

workpiece

dynamometer

charge
amplifiers

dSpace

PC

Figure 6.2: Schematic representation of the setup for measuring cutting forces.

6.3.1 Identification of the cutting force model parame-

ters

Cutting tests have been performed to experimentally identify the parameters,
Kt, Kr and xF of the cutting force model (2.6), presented in Section 2.4.
Hereto, full immersion cuts in aluminum 7075 have been performed while mea-
suring the cutting forces using a dynamometer (Kistler 9257A). A schematic
representation of the measurement setup can be found in Figure 6.2. The cut-
ter, used during the experiments, is a two-fluted cutter which has a diameter
of d = 16 mm, a shaft length of 72 mm and a helix angle greater than zero.
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Table 6.2: Estimated parameters of cutting force model obtained after fitting
model to measured cutting forces.

Kt [N/mm1+xF ] Kr [N/mm1+xF ] xF [-]
585.0038 210.0388 0.7654

Cuts are made for a spindle speed of 8000 rpm. The spindle speed is chosen
such that the frequency content of the measured cutting forces (which consists
of the spindle speed and tooth passing excitation frequencies and higher har-
monics, see Chapter 2) is significantly lower than the eigenfrequency of the
dynamometer (which is approximately 2.3 kHz).

The parameters are obtained by fitting the model on the experimentally
obtained cutting forces in feed and normal direction, denoted by Ft,xmeas

and
Ft,ymeas

, respectively, using least squares optimisation. Hereto, the approach as
outlined in [49] is used. By plotting the forces in normal direction as function
of the forces in feed direction, an ellipse can be fitted to the data. The data is
represented as function of the angle θ, where θ is defined as the angle to the

feed direction. By choosing a grid for θ, with Θ :=
[
θ1, θ2, . . . , θi, . . . , θN

]T
,

with θi ∈ [0, 2π], ∀i ∈ {1, N}, and averaging the measured cutting forces to
this grid (as shown in Figure 6.3), the following objective function is minimised,
see [49]:

∑

θi∈Θ

(√

Ft,xmeas
(θi)2 + Ft,ymeas

(θi)2 −
√

Ft,x(θi)2 + Ft,y(θi)2
)2

. (6.1)

In Figure 6.4, the measured cutting forces along with the fitted model are
given. The corresponding parameters are listed in Table 6.2. From the figures
it can be seen that the fitted model differs somewhat from the measured cutting
forces. The main difference is due to runout of the spindle/tool combination
(i.e. the geometric axis of rotation does not equal the axis of rotation). However,
as described in [49] the sensitivity of the sld with respect to the cutting force
parameters is much smaller as compared to the spindle dynamics. Therefore,
the fit of the parameters is considered sufficiently accurate.

6.3.2 Identification of the spindle-actuator dynamics

Next, the nominal model of the spindle and actuator dynamics is determined
experimentally. The model consists of four inputs (the input voltage to the
current controller which drives the amb and the force acting at the tooltip in
feed (x)- and normal (y)-direction) and four outputs (displacements in feed
(x)- and normal (y)-direction measured at the amb location and the tooltip).
In order to determine the frequency response functions (frf), corresponding
to this input/output set, of the experimental setup, the tooltip is excited using
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Figure 6.3: Measured and fitted cutting forces, where the cutting forces in nor-
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Figure 6.4: Cutting force measurements (grey) and fitted cutting force model
(black dashed) for a spindle speed of 8000 rpm, depth of cut of
2 mm, feed per tooth 0.2 mm.

an impulse hammer (PCB 086C04) while the accelerations at the tooltip are
measured using a B&K 4520 accelerometer and amb displacements are mea-
sured using the eddy current sensors (SKF CMSS 65). The frf matrix G of
the spindle dynamics is defined as follows:

G(iω) =

[
Gx(iω) 0

0 Gy(iω)

]

, (6.2)
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Figure 6.5: Schematic representation of the setup for identification of the
spindle-actuator dynamics.

with

Gx(iω) =

[
Gtt,x(iω) Gta,x(iω)
Gat,x(iω) Gaa,x(iω)

]

, Gy(iω) =

[
Gtt,y(iω) Gta,y(iω)
Gat,y(iω) Gaa,y(iω)

]

.

Herein, Gkl,x(iω) (and Gkl,y(iω)) denote the frf with output k and input l,
where t and a indicate tooltip and bearing excitation/response, respectively. In
Figure 6.5, a schematic representation of the experimental setup for identifica-
tion of the spindle actuator model is given. Since the controller design will be
based on a linear model, it is important to limit the input current of the amb,
due to the nonlinear relation between input current and force/displacements
[136]. Here, the amb is excited using a Pseudo Random Binary Sequence
(prbs), which is a periodic sequence that has constant amplitude, see [121]
for more details. Since frequency-domain identification techniques are used
and, moreover, the controller design is based on linear design techniques, the
amplitude of the prbs signal is chosen such that the amb works in the linear
operation domain. Here the amplitude is set to 1 V. Since it is difficult to
perform hammer tests for a rotating spindle, all the experiments are conducted
at stand-still. It is well known, that the dynamics of a spindle depends on the
spindle speed, see e.g. [2, 127]. However, the spindle speed dependency of the
experimental setup will be identified and modelled by including uncertainty to
the spindle-actuator dynamics during controller design, which is discussed in
the next section.

Based on the measured data, a parametric model is fitted to the obtained
frequency response functions. In principle, the conducted experiments are
single input multiple output (simo) experiments. By using a curve fitting
approach in the frequency domain instead of a time-domain approach, the
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number of data points can be considerably reduced. Since, the model of the
spindle-actuator dynamics consists of two-decoupled mimo systems (in x- and
y-direction), a multivariable identification approach is used to obtain the pa-
rameters of the model. In this way, a model of relatively lower order is obtained
as compared to an approach where a parametric model is fitted to each sin-
gle siso frf. The multivariable model is described using polynomial matrix
fraction descriptions as described in [18]. The parameters of the model are
determined using Sanathanan-Koerner (sk) iteration, see [131]. Hereto, the
freqid toolbox in Matlab is employed [17]. The order of the parametric model
is chosen such that,

1. the difference between the modelled and measured the frequency response
functions is as small as possible;

2. the model is internally stable.

In Figures 6.6 and 6.7, the amplitude and phase of the measured frequency
response functions (frfs) and corresponding parametric models in feed (x)-
and normal (y)-direction, respectively, are given. The corresponding coherence
plots can be found in Appendix B. It can be seen that, especially near res-
onances, the fitted frequency response data and experimental data are quite
comparable. The accuracy of the fit highly depends on the selected model order
and the chosen frequency-dependent weighting functions. Here, the inverse of
the amplitude data is used as weighting function during the parameter fitting
procedure. The presented parametric model has a total of 30 states (14 in feed
direction and 16 states in normal direction). The difference in order between x-
and y-direction is due to the appearance of an extra resonance around 500 Hz in
the y-direction. The order of the model is considerably lower as compared to a
model which would have been obtained by fitting each siso frf independently.

6.3.3 Identification of spindle-actuator dynamics uncer-

tainties

In [49], it has been concluded that the sensitivity of the sld with respect to
the spindle dynamics is considerably larger than the sensitivity as compared to
the parameters of the cutting force model. Consequently, during the controller
design, uncertainties in the spindle-actuator model, as obtained in the previous
section, will be included. Based on the discussion in the previous section, the
following sources can be considered as the most critical type of uncertainties
in the model of the spindle-actuator dynamics:

• uncertainty due to spindle speed dependent dynamics;

• uncertainty due to unmodelled dynamics;

• uncertainty due to temperature effects.
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Figure 6.6: Frequency response measurements (black) and fitted parametric
model (grey) in feed (x) direction. Gkl,x(iω) reflects the frfs with
output k and input l where t and a indicate tooltip and bearing
excitation/response, respectively.
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Figure 6.7: Frequency response measurements (black) and fitted parametric
model (grey) in normal (y) direction. Gkl,y(iω) reflects the frfs
with output k and input l where t and a indicate tooltip and bearing
excitation/response, respectively.
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Firstly, the uncertainty due to spindle speed dependent dynamics is known
for rotor dynamic systems. The spindle speed dependency arises due to gy-
roscopic effects in the rotor and the spindle speed dependent bearing stiffness
[127], which results in a change of the low-frequent stiffness and a change
in the eigenfrequencies of the spindle-actuator dynamics. The change in the
low-frequent stiffness is compensated for by scaling the nominal model of the
spindle-actuator dynamics, presented in Section 6.3.2. This is justified by the
fact that the change in stiffness can be estimated reasonably well. The scaling
factor νs,k is determined by dividing the average value of the magnitude of the
measured frf Gaa,k,n (which is the only frf from (6.2) that can be measured
for a rotating spindle) from input voltage of the current controller to measured
displacements va(t) at spindle speed n by the average value of magnitude of the
frf Gaa,k,0 measured at standstill over a certain frequency range Ω ∈ {ω1, ω2},
i.e.

νs,k =

∑

ωi∈Ω

|Gaa,k,n(iωi)|

∑

ωi∈Ω

|Gaa,k,0(iωi)|
, (6.3)

where k ∈ {x, y} and Ω should be chosen in the (low)-frequency domain where
the stiffness effects are present. The scaling factor may differ for both feed
and normal direction. After obtaining the scaling factors the scaled model is
obtained as

Gs,x = νs,xGx, Gs,y = νs,yGy. (6.4)

In order to deal with changing eigenfrequencies due spindle speed induced
uncertainty, parametric uncertainties will be used to consider uncertain spindle
modes. Uncertainty in resonances is often modelled as a parametric uncertainty
in the eigenvalue λ of the system matrix A of the system. One way to do this
is to transform the representation of the system matrix to the modal canonical
form (herewith the system matrix A of the system is in the real Jordan form).
After the transformation, the system matrix A is a block diagonal matrix, i.e.
A = diag(A1,A2, . . . ,AnC+nR

), with nC the number of complex eigenvalues of
A and nR the number of real eigenvalues of A, and

Al = λl, for λl ∈ R, (6.5)

and

Al =

[
Re(λl) Im(λl)
−Im(λl) Re(λl)

]

, for λl ∈ C. (6.6)

Note that in this case it is assumed that the eigenvalues have algebraic multi-
plicity one, which is typically the case for a parametric model based on a curve
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fitting procedure. Then a parametric uncertainty δω,l ∈ C, |δω,l| < 1 can be
introduced such that the uncertain mode is modelled as Al,δ = Al(1 + rlδω,l)
with scaling parameter rl. However, in this way the uncertainty δω,l becomes a
repeated scalar uncertainty, which results in an increase of the D-scales in case
of µ-synthesis which in turn leads to an increase of the controller order. To
overcome this problem, Kern [82] exploits a similarity transformation Tl such
that

Ãl = T−1
l AlTl =

[
0 1

−ω2
n,l −2ζlωn,l

]

. (6.7)

Then, by applying a parametric uncertainty δω,l to the undamped eigenfre-
quency ωn,l (since it is assumed that the uncertainty arises due to a change of

the bearing stiffness [2, 127]), the uncertain system matrix Ãl,δ is given as

Ãl,δ =

[
0 1

−ω2
n,l(1 + rlδω,l)

2 −2ζn,lωn,l(1 + rlδω,l)

]

. (6.8)

By assuming that the term ω2
n,l(rlδω,l)

2 is small, which is in general the case

since rl is typically chosen in the order of 10−2, (6.8) can be approximated as
follows [82]:

Ãl,δ ≃ Ãl +

[
0
rl

]

δω,l

[
−2ω2

n,l −2ζlωn,l

]
. (6.9)

As a result, the uncertainty δω,l becomes a single parametric uncertainty per
uncertain eigenfrequency ωn,l, which in turn will result in a controller with a
lower order as compared to the case where a parametric uncertainty was applied
to (6.6).

Secondly, the uncertainty due to unmodelled dynamics is mainly due to the
limited order of the parametric model which results in a deviation between
the measured and modelled frfs at higher frequencies. Moreover, at high
frequencies the signal to noise ratio of the eddy current sensors becomes small,
as can be seen from the measured frfs in Figures 6.6 and 6.7. Therewith, the
structure of the model at high frequencies is unknown and the uncertainty is
modelled using a (frequency-dependent) dynamic additive uncertainty.

Finally, temperature changes are mainly due to an increase of heat gener-
ated by the motor as well as due to friction at the interface between raceways
and balls in the bearings. This will result in heat generation in the bearings
and shaft housing which in turn results in a change in the bearing pre-load
[94]. The incorporation of temperature effects in the uncertainty model is diffi-
cult. Therefore, in this chapter, all the experiments are performed for a warm
spindle and it is assumed that small changes in the temperature are captured
by the parametric uncertainties at the eigenfrequencies. The spindle is consid-
ered warm when the motor temperature, a variable available in the motor-drive
software, has stabilised.
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Table 6.3: Parameters of the uncertain spindle modes in both x- and y-
direction.

ωn,l/2/π [Hz] 509 545 562 577 596
rl [-] 0.04 0.04 0.04 0.04 0.04

In order to determine the uncertainties in the spindle-actuator dynamics
of the experimental setup, frfs from amb input voltage to eddy current dis-
placements va(t) have been measured for several spindle speeds. In this case,
only the response at the bearing location can be measured. In Figure 6.8, the
amplitudes of the measured frfs in feed and normal direction are given for
several spindle speeds. First, the scaling parameters νs,x and νs,y, to compen-
sate for the change in the low-frequent stiffness, are determined. Hereto, the
average value of the magnitude of the measured frf at n = 18 krpm Gaa,k,18 is
divided by the averaged value of the magnitude of the frf at standstill Gaa,k,0

for k ∈ {x, y}. The interval Ω in (6.3) is chosen as Ω = 2π[20, 250] rad/s. This
results in scaling parameters νs,x = 1.4506 and νs,y = 1.8182. This implies that
there is a significant change in the stiffness due to the spindle speed dependent
dynamics, as can also be observed from Figure 6.8. From now on, when a ref-
erence to the nominal model is made, it implies the model in which the scaling
is absorbed.

From Figure 6.8, it can also be seen that the first bending mode (which lies
around 550 Hz) shifts as a function of the spindle speed. Moreover, it can be
seen that especially at frequencies above approximately 800 Hz the structure
of the model (which is determined using measured data at stand still) does not
match the measured frfs. Based on these results, it is chosen to model the
uncertainties on the eigenfrequencies of the model around 550 Hz by parametric
uncertainties and to add an additive uncertainty to cope with the differences
observed at higher frequencies. From 6.8, it can be seen that the uncertainty in
the model, especially at higher frequencies is rather large for the setup under
consideration. This may limit the maximal achievable depth of cut during the
controller synthesis. It should be noted, however, that such large uncertainties
are typically not present in spindles used in commercial milling machines.

In Table 6.3, the parameters of the uncertain eigenfrequencies are listed
for both the feed (x)- as the normal (y)-direction. Samples of the uncertain
modelled machine dynamics (where the additive uncertainty is not included in
the uncertain model) along with the additive uncertainty bound are given in
Figure 6.8. It can be seen that the measured spindle speed dependent spindle-
actuator dynamics lie inside the uncertainty set of the uncertain model of the
spindle-actuator model.
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Figure 6.8: Frequency response data for bearing excitation experiments for sev-
eral spindle speeds.

6.3.4 Stability lobes diagram

Before discussing the controller design, first, stability lobes diagrams (sld) are
calculated using the linearised non-autonomous model of the milling process
without control, as presented in Chapter 2, along with the obtained parameters
for the cutting force model and the nominal scaled parametric models of the
spindle-actuator dynamics as presented in Sections 6.3.1 and 6.3.2, respectively.
The sld is also determined experimentally. Hereto, cuts in aluminum 7075
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Figure 6.9: Experimental (o,x) and (nominal) model-based (grey line) stability
lobes diagram of the experimental setup.

have been made with the experimental setup as described in Section 6.2 for
several spindle speeds and depth of cuts. Based on a visible inspection of the
workpiece and the observed sound during the cut, a cut is marked with or
without chatter. The resulting experimentally obtained sld and the model-
based sld, calculated using the semi-discretisation method, are presented in
Figure 6.9. It can be seen that the calculated sld fits sufficiently well to the
experimentally obtained sld. Hence, the model of the described in this section
will be used for controller synthesis, which will be discussed in the following
section.

6.4 Controller design

The model of the experimental setup has been presented in the previous section.
In this section, active chatter controllers will be designed which will guaran-
tee robust stability of the milling process for a predefined domain of operating
points. The controllers are designed using the procedure as presented in Chap-
ter 4. Herewith, the linearised non-autonomous infinite-dimensional model of
the milling process is approximated by a linear autonomous finite-dimensional
model, which is suitable for control, by averaging the cutting forces and using
a Padé approximation to approximate the time-delay as described in Section
4.4. Moreover, as described in Section 4.5.4, the goal is to determine controllers
which guarantee robust stability for a pre-defined domain of operating points
in terms of spindle speed n and depth of cut ap while limiting the level of the
actuator forces. This is realised by, firstly, using the perturbation vibrations
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Figure 6.10: Stability lobes diagrams for the approximated autonomous milling
model with Padé approximation of order npd and the milling
model with exact time delay for the model of the setup.

ṽa(t) about the periodic solution v∗a(t) as a controller input signal (see Section
4.3), and, secondly, by enforcing a bound on the control sensitivity function KS

using weighting function WKS (see Section 4.5.4). It has been shown that the
problem can be cast into the generalised plant framework (see Section 4.5.5)
and solved using µ-synthesis techniques in the form of D-K-iteration.

As such, before being able to determine controllers K, the order of the Padé
approximation that will be used to approximate the time-delay in the milling
model needs to be selected and the performance weighting function WKS which
limits the controller sensitivity function should be specified.

In order to select the order of the Padé approximation, slds are determined
using the linearised autonomous model of the milling process, given by (4.18)
in Chapter 4, and the autonomous model with Padé approximation as given
by (4.19). Herein, the scaled nominal model (i.e. without uncertainty) of the
spindle-actuator dynamics, as discussed in Section 6.3.2, is used for calculating
the stability lobes diagrams. The resulting slds for several orders of the Padé
approximation are given in Figure 6.10. Similar observations as discussed in
Section 4.4 can be made regarding the error between the sld for the model with
exact time-delay and the milling model with approximated time-delay and the
order of the approximation. Since the delay is inversely proportional to the
spindle speed, the approximation becomes more accurate as the spindle speed
increases (i.e. for small delays). Based on the results in Figure 6.10, a Padé
approximation of order npd = 15 is selected in order to accurately approximate
the delay term in the milling model.

Next, the weighting on the control sensitivity function is defined. As de-
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scribed in Section 6.2, the bandwidth of the current controller is limited. In
addition, for an amb it is important to limit the input current in order to avoid
saturation of the current [136]. Moreover, as described above, it is desired to
limit the input current to the linear operating range of the bearing. Hereto,
the structure of the weighting function WKS is chosen as follows

WKS(s) = Kp

1
(2πfr)2 s2 + βr

2πfr
s + 1

1
(2πfp)2 s2 +

βp

2πfp
s + 1

·

1
(2πfr)2 s2 + βr

2πfr
s + 1

1
(2πfp)2 s2 +

βp

2πfp
s + 1

. (6.10)

Based on the reasoning above, the variables of the weighting function are cho-
sen as follows: fr = 1300 Hz, fp = 5000 Hz, βr = βp = 0.7 and Kp =
2.0 · 10−5 mm/V. Consequently, WKS has a high-pass characteristic which will
enforce roll-off in the controller above the roll-off frequency fr. The choice of
the gain Kp is a trade-off between the ability to shape the sld and the max-
imum current that can be applied to the amb. Moreover, since perturbation
feedback will be applied, the actuator forces will be already significantly smaller
than in the case where full output feedback is applied (see Section 4.6). This
makes it possible to choose Kp more freely.

Based on the sld of the uncontrolled system, as presented in Section 6.3.4
in Figure 6.9, it can be seen that the productivity of the system measured in
terms of the material removal rate (mrr), can be significantly increased when
the critical depth of cut is increased in the spindle speed range above 20000 rpm.
To this end, two controllers for a single spindle speed of n = 23000 rpm have
been designed. The first controller is designed where the uncertainty in the
spindle-actuator model is not included in the controller synthesis, whereas, for
the second controller the uncertainty in the spindle-actuator dynamics is in-
cluded in the controller design. For the latter case, the uncertainty in the
spindle-actuator dynamics is modelled as described in Section 6.3.3. The con-
trollers are designed by employing D-K-iteration with a bi-section scheme to
find the largest depth of cut āp such that the structured singular value µ

∆̂c
(N),

where N is defined as the lower fractional transformation between generalised
plant P, defined by (4.40) and controller K (see Section 4.5.6) with respect to

uncertainty set ∆̂c is smaller than one (i.e. supω∈R µ
∆̂c

(N) < 1) and robust
performance of the closed-loop milling process can be guaranteed. Recall, from
(4.52), that the uncertainty set ∆̂c is defined as

∆̂c =

[
∆c 0

0 ∆P

]

, (6.11)

with ∆P ∈ C2×2, ‖∆P ‖∞ < 1 and ∆c is obtained for the case without spindle-
actuator dynamics uncertainty

∆c ={δap
I2 : In∈R

n×n, δap
∈C, |δap

| < 1}, (6.12)



142 Active chatter control: experimental results

15 20 25 30 35
0

1

2

3

4

5

Controller order

su
p

ω
∈

R

µ
∆̂

c

(a) Without spindle-actuator uncertainty.

15 20 25 30 35
0

1

2

3

4

5

Controller order

su
p

ω
∈

R

µ
∆̂

c

(b) With spindle-actuator uncertainty.

Figure 6.11: Closed-loop µ∆̂c
-values for reduced-order controllers calculated

with and without spindle-actuator uncertainty, using closed-loop
balanced truncation. Black bars indicate an unstable closed-loop.

and for the case with spindle-actuator dynamics uncertainty included in the
controller design

∆c ={diag(δω,lI1, δap
I2) : δω,l, δap

∈C, |δω,l|, |δap
| < 1,

In∈R
n×n, l ∈ {1, . . . , 5}}.

(6.13)

As described in Section 4.5.6, µ
∆̂c

(N) is determined by calculating the upper
bound on µ

∆̂c
(N) as defined in (4.54).

Controller synthesis using D-K-iteration without including uncertainty in
the spindle-actuator dynamics yields a 104-th order controller for a maximal
depth of cut āp = 2.69 mm (µ

∆̂c
= 0.946). After applying closed-loop model re-

duction techniques as described in Section 4.5.7, the controller order is reduced
to 34 with supω∈R µ

∆̂c
= 0.9582 and, consequently, robust performance is guar-

anteed for the reduced-order controller. Values of supω∈R µ
∆̂c

for several con-
troller orders (after reduction) are given in Figure 6.11(a). The controller with
uncertainty in the spindle-actuator dynamics included in the synthesis yields
a 98-th order controller for a depth of cut āp = 2 mm (supω∈R µ

∆̂c
= 0.989).

Closed-loop model reduction yields a 19-th order controller with supω∈R µ
∆̂c

=
0.9859 and, as previously discussed, robust performance is guaranteed for the
reduced-order controller. Values of supω∈R µ

∆̂c
for several controller orders are

given in Figure 6.11(b). It can be seen that by including uncertainty in the
spindle-actuator dynamics model, the maximal depth of cut āp for which robust
performance of the milling system can be guaranteed is smaller than for the
case where no uncertainty in the spindle-actuator dynamics model is included
in the controller design. This was also concluded from the results in Chapter
4. This result is as expected, since a controller is designed which should ren-
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der the closed-loop milling model stable for an entire (uncertain) set of models
describing the spindle-actuator dynamics. Magnitude plots of the high-order
and reduced-order controllers are given in Figure 6.12. It can be seen that
the resulting controllers exhibit highly dynamical characteristics indicated by
the inverse notches in the frf. Whereas for the case without spindle-actuator
dynamics uncertainty, the full- and reduced-order controller have similar frf

magnitudes (hence the difference is hardly visible in Figure 6.12(a)), the frf

magnitudes for the full-order and reduced-order controller differ significantly
for the case where spindle-actuator dynamics is included in the controller syn-
thesis. In the next section, slds will be determined using the reduced-order
controllers for both cases.

6.5 Closed-loop model-based stability analysis

Based on the controllers, obtained using D-K-iteration in the previous section,
in this section, the results of a closed-loop model-based stability analysis will
be discussed. Hereto, sld diagrams will be determined using the linearised
non-autonomous model of the milling model (Equation (2.13)), as outlined
in Section 2.7, with the cutting force model parameters and spindle-actuator
dynamics model as described in Section 6.3 and the controllers as obtained in
the previous section. The resulting closed-loop model-based slds along with
the open-loop and experimentally obtained sld, as already presented in Section
6.3.4, are given in Figure 6.13.

From the closed-loop sld calculated using the controller without uncer-
tainty in the spindle-actuator dynamics included, as given in Figure 6.13(a),
it can be seen that the sld is shaped such that a peak at the desired spin-
dle speed of n = 23000 rpm is created. In this way, the depth of cut can be
increased from ap,max = 1.30 mm in the uncontrolled case to a depth of cut
of ap,max = 2.84 mm (āp = 2.69 mm) in the case with active chatter control,
where ap,max denotes the maximal depth of cut in the sld at n = 23000 rpm,
which is an increase of 118%.

When the spindle-speed uncertainty model is included in the controller de-
sign, the sld is altered in a different way as compared to the case with no
spindle-actuator uncertainty included in the controller design. This can be
seen from the sld in Figure 6.13(b). It can be clearly seen, that in this case
the controller is unable to create a peak at the desired location. This is due to
the fact that in order to create a peak in the sld the closed-loop eigenfrequency
needs to be altered (by the controller). However, due to the uncertainty in the
eigenfrequency the resulting controller cannot tailor the eigenfrequency such
that it is shifted to the tooth-passing excitation frequency. Consequently, the
peak in the sld is not located at the desired spindle speed. Despite this fact,
it can be seen that the resulting sld is lifted at the desired spindle speed. In
this case the depth of cut can be increased to ap,max = 2.23 mm (āp = 2 mm),
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(a) Without spindle-actuator uncertainty.
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(b) With spindle-actuator uncertainty.

Figure 6.12: Magnitude of the frf for the full-order (black) and reduced-order
(grey) controllers obtained from D-K-iteration for the case with
and without spindle-actuator uncertainty along with the inverse
of the performance weighting function WKS (dashed).



6.5. Closed-loop model-based stability analysis 145

15 16 17 18 19 20 21 22 23 24
0

0.5

1

1.5

2

2.5

3

Spindle speed [krpm]

D
ep

th
o
f
cu

t
[m

m
]

No Chatter
Unclear
Chatter

(a) Without spindle-actuator uncertainty.
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Figure 6.13: Experimental (o, x) sld and model-based (solid lines) sld of the
open-loop system (grey) and the closed-loop system for reduced-
order controllers (black) obtained from D-K-iteration with and
without spindle-actuator uncertainty, using the nominal spindle
dynamics. The domain of stable operating points as guaranteed
by the µ-synthesis is given by the dashed line.

which is an increase of approximately 71% as compared to the case without
active chatter control.

To explain the difference between the two control design cases in more
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detail, frfs of the closed-loop tooltip dynamics are given in Figure 6.14. The
open-loop and closed-loop tooltip dynamics are calculated using the nominal
model of the spindle-actuator dynamics. For the case that the uncertainty in
the model of the spindle-actuator dynamics is not included in the controller
design, it can be seen that the eigenfrequency related to the first bending
mode of the spindle is shifted to the first tooth-passing excitation frequency.
As discussed above, this leads to a peak in the sld at the desired spindle
speed of 23000 rpm which is beneficial for stability, i.e. the robustness of the
milling process against chatter. For the controller where the uncertainty model
of the spindle-actuator dynamics model is included in the controller design, it
can be seen that the closed-loop tooltip dynamics of the closed-loop system
in the feed (x)-direction is almost similar as the open-loop dynamics. The
resonance related to the first bending mode of the spindle-actuator model is
slightly damped. For the normal (y)-direction the resonance shifted towards
the first harmonic of the tooth passing excitation frequency and is also damped
considerably as compared to the open-loop tooltip dynamics. It is well known
that damping the resonances affects the chatter stability boundary over the
entire spindle speed range as can be seen from the sld in Figure 6.13(b).

From the results presented in this section, it can be concluded that when
the spindle-actuator dynamics has little or no uncertainty, the sld can be
altered such that a peak is created at the desired spindle speed interval, even
for relatively complex models of the spindle-actuator dynamics. However, in
the controller design a trade-off between performance (in terms of maximal
achievable depth of cut) and the amount of uncertainty in the spindle-actuator
model has to be made. In the next section, the controllers will be implemented
on the actual setup and closed-loop milling tests will be performed.

6.6 Experimental results

In the final part of this chapter, the controllers, as designed in Section 6.4, will
be implemented on the experimental setup. Hereto, the controllers are imple-
mented using hardware and software from dSpace [38], see Figure 6.15 where
a block diagram of the implementation of the controller is given. Recall from
Chapter 4 that the controllers are designed in a continuous-time domain set-
ting. Real-time workshop of Matlab [107] can be used to convert Simulink

models of the controllers to C-code which is then loaded onto the dSpace hard-
ware and executed in real-time. At each sampling instant a numerical integra-
tion algorithm calculates the controller output. Here a sampling frequency of
10 kHz is chosen. The choice of the sampling frequency is a trade-off between
the ability to implement controllers of relatively high-order (due to the num-
ber of calculations needed at each time instant) and the accurate discrete-time
approximation of the continuous-time controller in the digital control environ-
ment to prevent performance degradation. As already described above, the
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(a) Without spindle-actuator uncertainty.
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(b) With spindle-actuator uncertainty.

Figure 6.14: Magnitudes of the open-loop frf Gtt(iω) (dashed) and closed-
loop frf Gtt,c(iω) (grey) of the spindle-actuator dynamics at the
tooltip. The first harmonic of the tooth passing excitation fre-
quency is indicated by the vertical bar.
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Milling process

Spindle/actuator

dSpace hardware

PC with Matlab/Simulink

Current
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Eddy current
amplifier

vaĩc

Figure 6.15: Block diagram of the implementation of the controller on the ex-
perimental setup.

input current to the amb should be limited in order to prevent the amb from
saturating. In Section 4.3, it has been shown that by using perturbation feed-
back (i.e. the controller output is determined using the perturbation vibrations
ṽa(t) about the periodic solution v∗a(t) as controller input signal) the actua-
tor forces will be significantly smaller as compared to the case where the total
measured displacements va(t) are used as a input signal to the controller. In
order to determine the perturbation vibrations, an online estimation algorithm
as presented in Chapter 3, which is based on the nlms algorithm, can be used.
A similar estimation algorithm, based on a recursive least square algorithm is
presented in [83]. It should be noted that by applying an online estimation
algorithm in closed-loop with the controller and the plant, closed-loop stabil-
ity may not be guaranteed. This can be realised by considering the fact that
the estimation algorithm can be seen as a kind of observer and no separation
principle has been developed (yet) for this type of observer/controller design
combination in case of a system which can be described by a set of nonlinear
time-varying delay-differential equations.

Next, the controllers will be implemented on the actual setup and milling
tests will be performed. Unfortunately, the controller which is designed without
including the uncertainty model of the spindle-actuator dynamics in the con-
troller design, does not render the closed-loop system stable. The output of the
controller grows unbounded and results in saturation of the amb input current.
This result can be due to various reasons. First of all, since the controller is
designed without including uncertainty in the spindle-actuator dynamics, the
spindle-actuator dynamics may be, at the time of this experiment, such that
the closed-loop system is unstable. Secondly, as already mentioned in Chapter
4, the controller design does not guarantee a priori that the synthesised con-
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Figure 6.16: Magnitude and coherence of the measured closed-loop process sen-
sitivity and open-loop frf from current controller input voltage
to measured bearing displacements where the spindle is rotating
at n = 23000 rpm.

trollers are stable by itself. In this case, the controller without spindle-actuator
uncertainty included in the design, has unstable poles which are not desired
from a practical viewpoint [69].

Finally, the controller designed with uncertainty in the spindle-actuator dy-
namics taken into account, is implemented on the experimental setup. With
this controller it is possible to perform milling tests where perturbation feed-
back is applied by filtering the spindle speed harmonics from the measured
displacements using the recursive least squares algorithm from [83]. Herewith,
the first spindle speed harmonic and the first three tooth passing excitation
frequencies are filtered from the displacements va(t) measured using the eddy
current sensors. Before the results from a milling test are presented, first
measurements are performed to determine the process sensitivity frf of the
closed-loop system in both feed and normal direction. The obtained frfs are
compared to measurements of the open-loop plant. Hereto, the amb is excited
using a prbs signal with amplitude 2 A, for a rotating spindle at n = 23000 rpm
while measuring the response using the eddy current sensors. The resulting
magnitudes of the frfs in feed and normal direction are given in Figure 6.16
(note that in this case the tooltip dynamics, which are of interest for calcu-
lating the sld, cannot be measured since the spindle is rotating). From the
figures it can be seen that the controller alters the spindle dynamics, where
the first bending mode of the spindle is damped (this is especially noticeable
in the normal direction) and a resonance is created at approximately 1510 Hz
which is close to the second harmonic of the tooth passing excitation frequency
(2ftpe = 2 · 2·23000

60 ≈ 1533 Hz). Moreover, it can be seen that the stiffness of
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Feed

Control offControl on

Figure 6.17: Photo of the workpiece where a cut is made at n = 23000 rpm
for a depth of cut of ap = 2.5 mm, where in the first part of the
cut the controller is on and is switched off after approximately
100 mm.

the system is decreased.

Next, a full immersion cutting test has been performed at 23000 rpm for a
depth of cut of 2.5 mm using the controller with spindle-actuator uncertainty
included in the controller design. Notice that chatter occurs for the open-loop
at this depth of cut, see Figure 6.9. At the start of the cut, the controller is
switched on. When the cutter is approximately 100 mm inside the material
(in feed direction), the controller is switched off. After switching the controller
off, chatter marks become visible on the workpiece. A picture of a part of the
resulting workpiece is given in Figure 6.17. It can be seen that, at the start of
the cut, no chatter marks are visible on the workpiece, whereas, chatter marks
appear on the workpiece when the controller has been switched off. The output
ĩc(t) generated by the controller is given in Figure 6.18(a). With the controller
switched on, the amplitude of the controller output is about 1.8 A, which
is smaller than the maximal allowed controller output of 5 A (the maximum
allowed controller output is given by subtracting the pre-magnetising current in
Table 6.1 from the maximal current input as listed in Table 6.1, see also [136]).
The perturbation displacements ṽa(t), estimated using the recursive estimation
algorithm as described in [83], are given in Figure 6.18(b). From the estimated
perturbation vibrations ṽa(t) no significant decrease in amplitude can be seen
between the case with the controller switched on and the controller switched
off.

Therefore, the power spectral density (psd) plot of the estimated perturba-
tion vibrations ṽa(t) in the feed (x) direction are considered in Figure 6.19(a).
For sake of clarity, also the psd of the measured displacements va(t) in the feed
direction are given in Figure 6.19(b). It can be seen that the amplitude of the
first spindle speed harmonic and first three tooth passing excitation frequencies
are significantly reduced in the psd of the estimated perturbation vibrations.
This reduces the total amount of actuator forces necessary to stabilise the pro-



6.6. Experimental results 151

0 1 2 3 4
−2
−1

0
1
2
3

0 1 2 3 4
−2
−1

0
1
2
3

Time [s]

Control on Control off

ĩ c
,x

[A
]
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Figure 6.18: Controller output ĩc(t) (in ampere) and estimated perturbation
vibrations ṽa(t) (in µm) for a cut made at n = 23000 rpm for a
depth of cut of ap = 2.5 mm where along the cut the controller is
switched off.

cess. Next to spindle speed harmonics, other frequencies are present in the
psd. At approximately 570 Hz a dominant frequency can be seen in the psd,
which is related to the first resonance of the spindle-actuator system. It can be
seen that for the case with control the amplitude of this frequency is reduced
with almost 50% as compared to the case without control. Around the sec-
ond harmonic of the tooth passing excitation frequency (i.e. around 1500 Hz)
a clear difference in the psd for the case with and without can be seen. For
the case with control a relatively wide peak in the psd can be seen around
1500 Hz. This frequency is related to a new created resonance at the second
harmonic of the tooth passing excitation frequency as can be seen from the
magnitude of the measured closed-loop spindle-actuator dynamics in Figure
6.16. As discussed in Section 2.8, in the case without chatter the psd contains
spindle speed related frequencies as well as the damped natural frequencies of
the spindle dynamics, whereas chatter frequencies appear around each spindle
speed harmonic when chatter occurs. Due to the fact that the spindle system,
considered in this chapter, has multiple resonances it is difficult to distinguish
from the psd whether the typical chatter frequencies are present in the mea-
sured vibration signal. However, from the resulting workpiece in Figure 6.17
it is evident that for the case with control no chatter marks are visible on
the workpiece, whereas, for the case without control chatter marks are clearly
visible on the workpiece.

Resuming it can be said that, based on the results presented in this chapter,
the working principle of the active chatter control design methodology has been
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Figure 6.19: Power spectral density of the estimated perturbation vibrations
ṽa and measured displacements ṽa in feed (x) direction for a cut
made at n = 23000 rpm for a depth of cut of ap = 2.5 mm.

illustrated in practice. With active chatter control for a single spindle speed, the
depth of cut could be increased to 2.5 mm which is an increase of approximately
66% as compared to the experimentally uncontrolled obtained sld in Figure
6.9 at the same spindle speed.

However, more research is necessary for the further validation of the method-
ology for future implementation in commercial milling machines. In order to
design controllers based on the active chatter control methodology for the ex-
perimental setup under consideration uncertainties needed to be incorporated
into the controller design which significantly limits the performance of the ob-
tained controller, as illustrated in this section. One way to decrease the amount
of uncertainties is the dedicated identification of the model of the experimental
setup at the spindle speed for which controllers need to be designed (as opposed
to identifying the spindle dynamics at standstill). Identification of spindle-
speed dependent spindle-actuator dynamics is difficult due to the fact that the
tooltip response cannot be measured directly. Receptance coupling techniques,
as e.g. discussed in [45, 111, 134], where the spindle-actuator dynamics are
determined for a specific spindle speed and (a model of) the tool/toolholder
dynamics is coupled afterwards to the obtained spindle-actuator dynamics,
can be applied. Although receptance coupling techniques seem to work well
for simple models of the spindle-actuator dynamics, more research is necessary
for more complex spindle-actuator dynamics as discussed in [171]. Moreover,
while the experimental setup as used in this chapter can serve as a testbed
to provide a proof of principle of the active chatter control methodology, it
cannot be readily used in a machine shop. This is mainly due to the relatively
large uncertainties present in the setup under consideration, as discussed in
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Section 6.3.3. Hereto, a new dedicated spindle design with integrated actuator
should be pursued which is better suitable for application in commercial milling
machines.

6.7 Discussion

The goal of this chapter has been to illustrate the working principle of the ac-
tive chatter control strategy on an actual milling spindle with integrated (amb)
actuator. A milling spindle with an integrated active magnetic bearing, located
between the front bearing and the toolholder connection, is used to provide the
proof of principle. From the experimental results, presented in this chapter,
it can be concluded that the active chatter control methodology, developed
in this thesis, can indeed be applied to design controllers which alter the sld

such that a pre-defined domain of working points is stabilised, even for (more)
complex (models of the) spindle-actuator dynamics. A milling test illustrates
that with active chatter control at a specific spindle speed, the productivity,
for the spindle considered in this chapter, can be increased by approximately
66% as compared to the case without active chatter control. The increase of
productivity (i.e. the mrr) is limited, firstly, due to the fact that the identifica-
tion of the model of the spindle-actuator dynamics can only be performed for
a non-rotating spindle, and, secondly, due to the fact that the spindle-actuator
dynamics varies significantly due to, amongst others, temperature effects. Both
effects require that uncertainties in the model of the spindle-actuator dynamics
need to be taken into account during controller design, resulting in a limited
increase of the productivity as compared to the case where no uncertainties in
the spindle-actuator model are included in the controller design. Therefore, a
trade-off has to be made between the performance of the controller (in terms of
maximal achievable depth of cut) and the amount of uncertainty included in the
controller design. The uncertainties in the spindle dynamics are rather large
for the typical spindle under consideration in this chapter. Therefore, it is rec-
ommended to pursue a new dedicated spindle design with integrated actuator
which is better suitable for application in commercial milling machines.
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7

Conclusions and recommendations

7.1 Conclusions

7.2 Recommendations

The occurrence of the vibrational instability phenomenon chatter limits the
performance (in terms of the material removal rate (mrr)) of cutting tech-
niques, such as the high-speed milling (hsm) process. Chatter should therefore
be avoided at all times. A machinist can select (chatter-free) working points
based on the knowledge of stability lobes diagram (sld). The choice of the
working point typically aims at a high productivity while possibly complying
with additional cutting speeds requirements. In order to guarantee a chatter-
free high-speed milling operation, which, firstly, is robust for changing process
conditions and, secondly, renders working points with a higher mrr feasible,
two chatter control approaches have been developed in this thesis.

The first chatter control strategy, presented in Chapter 3, ensures a robust
(chatter-free) milling operation, despite changing process conditions, such as
temperature changes and wear of the spindle and tool, by automatic adaptation
of spindle speed and feed. The second control strategy, presented in Chapters 4,
5 and 6, enables dedicated shaping of the stability lobes diagram in a selective
spindle speed range such that working points, in terms of spindle speed and
depth of cut, of higher mrr become feasible while avoiding chatter.

In Section 7.1, the main conclusions of the work presented in this thesis
will be discussed. Recommendations for future research will be presented in
Section 7.2.

7.1 Conclusions

The conclusions of this thesis are categorised based on the two chatter control
strategies.

Chatter control by automatic spindle speed selection

The conclusions regarding chatter control by automatic adaptation of spindle
speed and feed, as presented in Chapter 3, are given as follows:
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• The automatic spindle speed selection algorithm requires an early detec-
tion of the onset of chatter and, moreover, an accurate estimation of the
(dominant) chatter frequency. A novel, computationally efficient, detec-
tion algorithm is presented which detects chatter before chatter marks
appear on the workpiece. A computationally efficient algorithm is a pre-
requisite for chatter detection, since chatter develops typically within
100 ms in the case of hsm. Additionally, the detection algorithm pro-
vides an accurate estimate of the (dominant) chatter frequency, which is
necessary for the automatic spindle speed selection control algorithm.

• When chatter is detected, spindle speed and feed setpoints are generated
such that stable (chatter-free) machining is guaranteed. Two approaches
are discussed in Section 3.3. In the first approach, which is a common
approach in literature on chatter control by spindle speed selection, the
spindle speed is adjusted such that a tooth passing excitation frequency
becomes equal to the dominant chatter frequency. While this results in
bounded chatter vibrations, the vibrations are not likely to be minimised.
Therefore, in this work, a second approach, based on extremum seeking
control, is presented, which automatically minimises the cutter vibrations
by adaptation of the spindle speed.

• Experiments on a state-of-the-art high-speed milling machine have been
performed in Section 3.4 to validate the working principle of the chatter
detection and automatic spindle speed selection control algorithm in prac-
tice. Results illustrate that both spindle speed selection approaches en-
sure the avoidance of chatter. Consequently, spindle speed selection guar-
antees a robust high-speed milling operation, such that working points
high up in a lobe may be selected, which results in a high material re-
moval rate, without the occurrence of chatter. Whereas the first approach
only guarantees a robust machining operation, the second approach also
minimises the total chatter vibrations.

Active chatter control design

The conclusions regarding the active chatter control design, as presented in
Chapters 4, 5 and 6, are given as follows:

• A (model-based) active chatter control methodology has been developed
which is able to shape the stability lobes diagram in a selective range of
spindle speeds, such that chatter free high-speed milling operations can
be a priori guaranteed for a predefined domain of operating points. As a
result, working points of a higher material removal rate become feasible
while avoiding chatter. Such a strong guarantee of a priori stability for a
predefined domain of operating points does not yet exist in active chatter
control in the case of milling. This is contrary to the application of active



7.1. Conclusions 157

damping which lifts the sld over the entire spindle speed range at the
cost of high required levels of actuation energy. The requirement of a
priori stability for a predefined range of process parameters is cast into
a robust stability requirement. Hereto, the spindle speed and depth of
cut are treated as uncertainties. In addition, uncertainties in the spindle
dynamics, due to spindle-speed dependent dynamics, can be included in
the controller design.

• The controller effort, needed to stabilise milling operations is limited
during the controller design. Firstly, a comprehensive analysis has been
presented where, based on an appropriate choice of the controller input
signal, it is illustrated that the actuator forces can be significantly re-
duced. Secondly, a bound on the actuator forces is incorporated in the
controller design by including a bound on the controller sensitivity as a
performance criterion.

• The dynamics of the milling model, as discussed in Chapter 2, is modelled
as a set of nonlinear time-varying delay differential equations. The pres-
ence of the time-delay and the explicit time-dependency of the milling
model complicates the controller design. Hereto, in Chapter 4, a simpli-
fied (finite-dimensional, autonomous) linearised milling model is derived
where the time delay is approximated using a Padé approximation and the
cutting forces are averaged over the tooth path. Then the control prob-
lem is solved via µ-synthesis using D-K-iteration. Results for illustrative
examples, clearly illustrate the power of the proposed control method-
ology. The chatter stability boundary is locally shaped to stabilise the
desired range of working points. This is contrary to the application of
active damping which lifts the sld over the entire spindle speed range
at the cost of high required levels of actuation energy. The controllers
tailor the closed-loop spindle dynamics in such a way that a resonance is
situated near a tooth pass excitation frequency of the desired (range of)
spindle speeds which results in a peak in the sld at the desired (range
of) spindle speeds.

• The active chatter control methodology, based on a simplified linearised
milling model, results in controllers which are of relatively high order
due to the relatively high order of the Padé approximation necessary to
accurately describe the delay term in the desired range of spindle speeds.
To alleviate the burden of controller complexity, which is important for
digital implementation, the order of the controller is reduced by applying
closed-loop balanced truncation techniques.

• A disadvantage of the employment of controller order reduction by closed-
loop balanced truncation is that in general no guarantees can be given re-
garding closed-loop stability and (robust) performance of the closed-loop
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system. To overcome this drawback, a fixed structure active chatter con-
trol procedure is presented in Chapter 5. The fixed structure controller
design is based on the infinite-dimensional model of the milling process,
i.e. without approximating the time-delay term. In this way, low-order
controllers can be designed which is beneficial from an implementation
perspective. Results, for both static and dynamic output feedback, show
that even for low-order controllers it is possible to alter the sld, in a
dedicated fashion, such that a peak in the sld is created in the desired
range of spindle speed range. This illustrates the effectiveness of the fixed
structure controller design methodology.

• Some similarities and differences can be distinguished between the two ac-
tive chatter control methodologies presented in Chapters 4 and 5. Firstly,
both control design approaches are based on µ-synthesis techniques and
the related optimisation problems are solved using D-K-iteration. Sec-
ondly, the fixed-structured chatter control design is based on the model
without any delay approximation, whereas the controller design in Chap-
ter 4 is based on a linear model with approximation of the delay. Thirdly,
the µ-synthesis for the finite-dimensional model of the milling process
leads to high-order controllers while the fixed-structure controller design
procedure results in linear controllers of fixed-order. Fourthly, no uncer-
tainty in the spindle dynamics is included in the fixed-structure control
design procedure, yet. Finally, standard tools from robust control theory
can be applied in case of active chatter control for the finite-dimensional
model of the milling process to determine controllers of high-order, which
may be required for active chatter control in case of complex spindle dy-
namics. However, it may be computationally challenging to determine
high-order controllers using the fixed-order active chatter control method-
ology.

• Experiments have been performed to validate the working principle of
the active chatter control strategy (of Chapter 4) in practice. Hereto,
a milling spindle with an integrated active magnetic bearing, located
between the front bearing and the toolholder connection, is considered.
Based on the obtained experimental results, it can be stated that the
active chatter control methodology, as presented in this thesis, can indeed
be applied to design controllers, which alter the sld such that a pre-
defined domain of working points is stabilised, even for (more) complex
(models of the) spindle-actuator dynamics and relatively high levels of
uncertainty therein. Results from milling tests underline this conclusion.
By using the active chatter controller, designed for a specific spindle
speed, working points with a higher material removal rate become feasible
while avoiding chatter.

• The rational behind of the automatic spindle speed selection algorithm,
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presented in Chapter 3, and the active chatter control methodologies,
presented in Chapters 4 and 5, are actually similar. Both approaches
aim to set the dynamic chip thickness equal to zero. The spindle speed
selection algorithm alters, in case of (onset) of chatter, the spindle speed,
such that a tooth-passing excitation frequency is set (equal or close to) the
dominant chatter frequency, which results in the dynamic chip thickness
to be zero. The active chatter control methodology, alters the spindle
dynamics such that an eigenfrequency is set to a tooth passing excitation
frequency, and, as a result the dynamic chip thickness becomes equal to
zero, which is beneficial for stability.

Summarising, it can be said that, with the chatter control methodologies, as
presented in this thesis, robust (chatter-free) high-speed milling operations can
be performed with a significant increase in productivity as compared to the case
without chatter control. Firstly, the application of the automatic in-process
spindle speed selection algorithm, ensures robust machining despite changing
process conditions, such as temperature changes in the spindle and wear of
the tool. In this way, working points high up in a lobe may be chosen which
results in an increase of the mrr, as compared to the case where a working
point is chosen which is stable for all spindle speeds. Secondly, the application
of the active chatter control methodology, as presented in this thesis, enables
the possibility to alter the sld in a specific range of spindle speeds. Therewith,
working points of a high depth of cut can be rendered feasible (chatter-free)
which results in a significant increase in the mrr.

7.2 Recommendations

In this final section, recommendations for future research are given. Firstly,
recommendations regarding the automatic spindle speed selection algorithm
will be given. Secondly, recommendations regarding the active chatter control
design methodologies will be discussed.

Chatter control by automatic spindle speed selection

Recommendations for future research regarding the automatic spindle speed
selection chatter controller design are given below:

• The chatter detection and control methodology that, by automatic adap-
tation of spindle speed and feed, ensures robust (chatter-free) milling
operations, as presented in Chapter 3, requires the selection/tuning of
the parameters of the detection and control algorithm. In general, these
parameters will differ for each milling machine/spindle/workpiece combi-
nation. Moreover, the tuning of the parameters can be a challenging task.
Therefore, a methodology to automatically select the parameters of the
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detection and control algorithm would be highly beneficial to successfully
implement the chatter control strategy in a machine shop environment.

• In the experimental results of Chapter 3, it has been discussed that there
is a relatively large delay present in the chatter control loop. The delay is
caused by the fact that the spindle speed and feed override on the hand
terminal are used as an input to the spindle speed and feed controllers of
the milling machine. The spindle speed and feed override has a relatively
low priority in the control loop of a milling machine which, in turn, results
in a delay in the control loop. Although chatter is detected before chatter
marks are present on the workpiece, due to the relatively large delay,
some small chatter marks may still appear on the workpiece during the
spindle speed transition. Therefore, in order to reduce the delay in the
chatter control loop, the spindle speed and feed setpoint should be directly
supplied to the internal spindle speed and feed controllers of the milling
machine.

Active chatter control design

Recommendations for future research on active chatter control design are given
below:

• The active chatter control design, presented in Chapters 4, 5 and 6, has
been based on an autonomous model of the milling process (after aver-
aging of the time-varying cutting model). While the autonomous model
is a good approximation of the non-autonomous model for high immer-
sion levels, it may not be sufficient for active chatter controller design at
low immersion levels. Therefore, for cuts at a low immersion level, the
time-varying term in the milling model should be taken into account dur-
ing controller design. Hereto, e.g. Lyapunov-based techniques for robust
stabilising controller design may be exploited.

• In order to limit the amount of actuator forces needed to stabilise the
milling process in a pre-defined domain of working points, perturbation
feedback can be applied. Hereto, the (nominal) periodic solution of the
milling process is subtracted from the total (measured) vibrations. An
alternative approach might be to apply Pyragas type feedback (see [125,
126]), where the delayed total (measured) vibrations are subtracted from
the total (measured) vibrations at the present time.

• The working principle of the active chatter control strategy, presented in
Chapter 4, has been illustrated using a milling spindle where an active
magnetic bearing is integrated in the spindle (see Chapter 6). In addi-
tion, controllers should be designed for the more complex spindle-actuator
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dynamics of the experimental setup, using the controller design method-
ology from Chapter 5. For more complex spindle dynamics, controllers
with a relatively large number of parameters are probably required to be
able to shape the sld, which may lead to computational issues in the
fixed structure controller design. In addition, uncertainty in the spin-
dle dynamics should be included in the fixed structure controller design
methodology.

• The obtainable increase in performance (i.e. mrr) for the experimental
setup is limited, firstly, due to the fact that the identification of the
model of the spindle-actuator dynamics can only be performed for a non-
rotating spindle, and, secondly, due to the fact that the spindle-actuator
dynamics varies significantly due to, amongst others, temperature effects.
These effects require that relatively large uncertainties are included in
the controller design, which results in a limited increase of the material
removal rate. Consequently, in order to improve the performance of the
active chatter control design for more complex models of the spindle
dynamics even further, the amount of uncertainty that needs be included
during the controller design should be decreased. Hereto, first, the model
should be based on experiments that are performed for a rotating spindle
in the range of spindle speeds for which the controller will be designed.
However, in general, it is difficult to measure the tooltip response for a
rotating spindle. Receptance coupling techniques can be used to couple
the experimental model of the spindle-actuator dynamics, obtained for
a certain spindle speed, to a model of the tool dynamics (e.g. obtained
using finite-element modelling based techniques). Although receptance
coupling techniques seem to work well for simple models of the spindle-
actuator dynamics, more research is necessary for more complex spindle-
actuator dynamics [171].

• The amount of the uncertainties in the spindle, due to e.g. temperature
effects, are rather large in the specific spindle employed in the experiments
in Chapter 6. Therefore, a new dedicated spindle design with integrated
actuator should be pursued which is better suitable for application of
active chatter control in commercial milling machines. The spindle design
should focus on the implementation of an actuator which enables the
implementation of the active chatter control strategies, as presented in
this thesis, without diminishing the stiffness as compared to a spindle
without the additional actuator.
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A

The structured singular value

This section, briefly introduces the definition of the structured singular value.
The discussion in this section is based on the work in [181]. A more elaborate
discussion regarding the structured singular value and its computation can be
found in [117, 142, 181]. Consider an uncertain system L, modelled as the feed-
back interconnection between (nominal) stable plant N and stable uncertainty
term ∆, as given in Figure A.1.

A common interest in robust stability problems is the size of the uncertainty
∆ which destabilises the system. The closed-loop system L becomes unstable
if det(I − N∆) = 0. Based on the small-gain theorem, the closed-loop system
L is internally stable when

‖L‖ < 1, (A.1)

where ‖L‖ denotes the norm induced by the signal norm which guarantees
‖AB‖ ≤ ‖A‖‖B‖. A common norm induced by the signal norm, which is also
used in this thesis, is the H∞-norm. Then, when both N and ∆ are stable,
the feedback interconnection between N and ∆ is internally stable for all ∆,
if and only if,

‖N‖∞ < γ, with ‖∆‖∞ ≤
1

γ
(A.2)

with γ a constant such that γ > 0 and

‖N‖∞ := sup
Re(s)>0

σ̄(N(s)) = sup
ω∈R

σ̄(N(iω)). (A.3)

Herein, σ̄(N) denotes the largest singular value of N. The last equality in (A.3)
is due to the fact that N(s) is assumed stable and therewith is analytic and
bounded in the open-right half complex plane. Then, as described in [181], for
any s for which Re(s) > 0, the system L is at the edge of stability when the
largest singular value of N equals:

σ̄(N) =
1

min{σ̄(∆) : det(I − N∆) = 0,∆ is unstructured}
. (A.4)

Next, a similar line of reasoning can be followed when the uncertainty term has
a certain structure. The smallest destabilising structured complex uncertainty
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N

∆

Figure A.1: Feedback interconnection between nominal plant N and uncer-
tainty term ∆.

∆ is defined, by generalising the concept of the largest singular value, as follows:

µ∆(N) =
1

min{σ̄(∆) : det(I − N∆) = 0,∆ is structured}
. (A.5)

If det(I − N∆) 6= 0 for all ∆ then µ∆ = 0. Then, from the definition of the
structured singular value µ∆, the feedback interconnection between N and ∆

is internally stable for all ‖∆‖∞ ≤ 1/γ, if and only if,

sup
Re(s)>0

µ∆(N(s)) = sup
ω∈R

µ∆(N(iω)) < γ. (A.6)

Hence, the value µ∆(N) defines the inverse of the smallest value of the norm of
structured complex ∆, i.e. σ̄(∆), for which the closed-loop system L becomes
unstable.



B

Additional figures of the experiments

In this appendix the coherence plots of the identification measurements of the
spindle-actuator dynamics with the experimental setup, as presented in Chap-
ter 6, are given.
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Figure B.1: Coherence plots of the frequency response measurements of the
spindle-actuator dynamics. Gkl,x(iω) and Gkl,y(iω) reflect the
frfs with output k and input l where t and a indicate tooltip
and bearing excitation/response, respectively.
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