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Chapter 1

Introduction

Drilling systems are used to drill wells in the earth’s surface for the exploration
and production of, for example, water, oil, natural gas, mineral resources and
geo-thermal energy. In this work, the focus is on oil-field drilling systems. The
earliest known oil wells were drilled in China in 347 AD. These wells were up
to approximately 240 m deep and were percussion-drilled using bits attached to
bamboo poles [113]. Although the main purpose for these wells was drilling for
salt, incidentally oil was also discovered. In these days, both oil and gas were used
for heating and lighting. Later, when oil was still mainly exploited from surface
seeps, oil was also used for fuel and medicinal purposes [118]. However, it lasted
till the 19th century until engineers began drilling deliberately for petroleum.
This resulted in, what is reported as, the first modern oil well in 1859 [118]. The
earliest oil wells in modern times were drilled percussively, by repeatedly raising
and dropping a cable tool. In the 20th century cable tools were largely replaced
with rotary drilling systems, which could drill boreholes to much greater depths
and in less time.

At the beginning of the 20th century, the industrial revolution had progressed
to the extent that the use of refined oil for illumination ceased to be of primary
importance. The oil industry became the major supplier of energy largely be-
cause of the advent of the automobile. Although oil is also of great importance
for the petrochemical industry (e.g. for the production of plastics, soaps and de-
tergents, solvents, synthetic fibres and rubbers) its primary importance is as an
energy source [95]. In both applications, it only became more important in the
20th century, resulting in an enormous increase of the oil production. Around
1900, the world oil production was nearly 410.000 barrels per day, surpassing
1 million barrels per day (Mmbpd) in 1913, 10 Mmbpd in 1950 and peaked at
over 62 Mmbpd in 1979 [118]. After a drop, the world production again exceeded
60 Mmbpd in 1986 and 70 Mmbpd in 1995, 80 Mmbpd in 2004 and currently
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(2014) the world oil production is over 93 million barrels per day [117]. This
increasing demand for the production of oil and the fact that the “easier” ar-
eas of the world became intensively explored, resulted in increasing attention to
harsher and more difficult environments. For example, until the 1970’s, most oil
wells were vertical. However, modern directional drilling technologies allow for
strongly deviated wells which can actually become horizontal. The use of devi-
ated and horizontal wells made it possible to reach reservoirs several kilometers
away from the drilling location. To reach these unconventional reservoir sections,
deep and curved borehole geometries need to be drilled. This tendency towards
drilling deeper and inclined wells increases the susceptibility to (torsional stick-
slip) vibrations for currently used drilling systems. In the next section, stick-slip
vibrations in drilling systems are discussed in more detail. The main focus of
this thesis is on developing and analyzing (control) strategies to mitigate these
vibrations in drilling systems.

This chapter forms a high-level introduction to this thesis as a whole and is
written in a concise fashion to highlight the motivation and contributions of the
thesis. More detailed literature surveys are presented in the individual chapters.

1.1 Stick-slip vibrations in drilling systems

Efficiency, reliability, performance, and safety are important aspects in the
drilling of deep wells. One of the main limiting factors in maximizing the drilling
performance is the presence of drill-string vibrations. These drill-string vibra-
tions decrease the quality of the borehole, provoke premature wear of drilling
equipment resulting in fatigue and induce failures such as drill pipe twist-off [98].
Due to the decreased performance and efficiency, drill-string vibrations can cost
operations millions of dollars for each drilling campaign. Thus, mitigation of vi-
brations and therewith improving the drilling performance is of great economical
interest for the oil industry. At the same time, safety remains the top priority
and requirement in the drive for performance [47]. In other words, achieving im-
proved performance (e.g. by reducing vibrations), and therewith reduced costs,
may not be obtained at the expanse of reduced reliability and safety.

Drilling systems are known to exhibit different types of self-excited vibra-
tions, such as axial, lateral and torsional vibrations which lead to bit bouncing,
whirling and torsional stick-slip, respectively. The focus in this work is on tor-
sional stick-slip vibrations and in particular on the mitigation of torsional stick-
slip vibrations. Torsional stick-slip is characterized by phases in which the bit
comes to a complete stop (stick) and phases in which the bit rotates with sev-
eral times the desired angular velocity (slip). A simulation result of a drill-string
system, with a desired angular velocity of 100 rpm, that suffers from stick-slip
vibrations is shown in Figure 1.1. The stick-slip limit cycles in the response
of the bit angular velocity can be clearly recognized in this figure. In practice,
the presence of stick-slip vibrations can be recognized in both down-hole and
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Figure 1.1: Simulation result of a drill-string model to illustrate the stick-
slip behavior in the response of the bit angular velocity.

surface measurements [20, 69, 86]. Investigation of these vibrations in terms of
modelling, analysis and stick-slip mitigation is an important aspect in the drilling
industry. One of the first drill-string vibration models has been developed in [3],
where predicted natural frequencies are compared with the frequencies present
in (surface) measurements. In [18, 20], the presence of stick-slip vibrations in
the drilling system has been reported based on measurements of a down-hole
recording tool. The work in [5] presents one of the first analytical treatments of
stick-slip vibrations in drill-strings. Extensive overviews regarding modelling of
the drilling dynamics can be found in [65,85,98,109,131].

The main problem with stick-slip vibrations is the fact that it reduces the
drilling efficiency, resulting in a decrease of the rate-of-penetration (ROP). In
addition, this type of vibrations results in excessive bit wear, and it is detrimen-
tal for the tools in the bottom hole assembly (BHA) due to the high angular
velocities which are reached during the slip phases. For these reasons, mitigation
of stick-slip vibrations is of great interest.

1.1.1 Mitigation of stick-slip vibrations

Stick-slip mitigation methods for drilling systems can be divided in two main
categories: passive stick-slip suppression and active stick-slip suppression. The
first category can be grouped in three sub categories, that is, optimization of
the BHA, bit selection and redesign, and the use of down-hole tools [131]. Ac-
tive stick-slip suppression involves active control by means of feedback control
strategies.

A detailed overview of passive stick-slip suppression methods is given in [131].
In the scope of passive solutions we only focus on the use of down-hole tools for
stick-slip suppression in this thesis and, in particular, on the anti stick-slip tool
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(AST) that has been developed by Tomax [102]. This is a mechanical down-
hole tool which aims to adjust the drilling torque automatically and therewith
to reduce stick-slip oscillations and to increase the drilling efficiency. Reported
field results show that the tool indeed reduces the amount of vibration related
failures and improves the drilling ROP [90, 91]. Although these field results
provide evidence about the effectiveness of the tool, a fundamental physics-based
explanation for these effects is lacking to this date.

The second solution to suppress stick-slip vibrations in drilling systems that
is mentioned in literature, is the usage of active feedback control. Early feed-
back control strategies to actively damp torsional stick-slip vibrations can be
found in [40, 51]. Based on these works, the well-known Soft Torque Rotary
System (also referred to as SoftTorque) has been developed. The underlying
idea of this control strategy is to make the top rotary system behave in a “soft”
manner and this strategy is widely used in industry. In this controller design
strategy, it is assumed that the drilling system behaves like a two degree-of-
freedom torsional pendulum of which the first torsional mode can be damped
using a PI-controller based on feedback of the surface angular velocity. However,
the aforementioned tendency towards drilling deeper and inclined wells, results
in drill-strings of several kilometers in length to transmit the axial force and
torque necessary to drill the rock formations. The long and slender structure of
current drill-string configurations makes drilling systems susceptible to torsional
stick-slip vibrations. In contrast to wells drilled 20 to 30 years ago, in current
wells the influence of multiple dynamical modes of the drill-string on torsional
vibrations has increased [82, 96]. Therefore, current industrial controllers (such
as SoftTorque) are not always able to eliminate stick-slip vibrations under the
imposed operating conditions [30]. Another reason for the deficiency of current
control strategies is the uncertainty in the (nonlinear) bit-rock interaction. In
models concerning the torsional drill-string dynamics it is generally assumed
that the resisting torque at the bit-rock interface can be modelled as a frictional
contact with a velocity-weakening effect [11]. The interaction between the bit
and the bottom of the borehole plays an important role in the onset of stick-
slip vibrations. However, the cutting process depends, among other things, on
the formation, wear state of the bit and the drilling dynamics. These aspects
make the interaction process uncertain and varying over time due to changing
conditions. Another important aspect in the design of controllers to mitigate
stick-slip vibrations in drilling systems is the type of measurements used for
feedback control. In literature, some controller design methodologies rely on
down-hole measurements (see e.g. [19,103]). However, down-hole measurements
for real-time control purposes are not available in practice, due to limitations on
the data rate, time delay of the measurements, and/or the high costs involved.
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1.2 Objectives and contributions

The concise discussion in the previous section motivates the relevance of the
stick-slip oscillation problem in drilling systems. Moreover, the main reasons
for the deficiency of current control strategies under the imposed operating con-
ditions are addressed. That is, the influence of multiple dynamical modes of
the drill-string on torsional vibrations and the uncertainty in the bit-rock in-
teraction law. Therefore, this thesis considers the design and implementation
of controllers for oil-field drill-string systems to eliminate (torsional) stick-slip
oscillations. Summarizing, the general objective of this thesis can be stated as
follows.

Develop and analyze (control) strategies to mitigate stick-slip vibrations in drilling
systems, hereby addressing the following aspects:

1. Development of controller design strategies for active feedback control of
drilling systems with multiple dominant flexibility modes and severe velocity-
weakening and uncertainty in the bit-rock interaction;

2. Robustness analysis and validation on a lab-scale drill-string system of the
proposed controller design methodologies;

3. Modelling and analysis of passive down-hole tools for the mitigation of
stick-slip vibrations and rate-of-penetration increase.

The robustness of the designed controllers is investigated for operating con-
ditions for which current industrial controllers fail to eliminate stick-slip vibra-
tions. For the experimental validation of the designed control strategies a lab-
scale drill-string system is developed. This system is used as an experimental
benchmark system for the implementation of the designed controllers and serves
as an intermediate step towards field implementation of the controllers on a real
rig.

1.2.1 Contributions of the thesis

The main contributions of this thesis can be summarized in terms of contribu-
tions on modelling for control of torsional vibrations in drill-string systems, on
novel controller design strategies for drill-string systems, on realization of a lab-
scale drill-string system, on experimental validation of the proposed controllers,
and on modelling and analysis for the assessment of a down-hole anti stick-slip
tool:

• Modelling for control of torsional vibrations in drill-string systems: for
the design of controllers to mitigate torsional vibrations in drilling sys-
tems, most studies rely on one- or two degree-of-freedom (DOF) models
for the torsional drill-string dynamics only. However, as mentioned before,
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the influence of multiple dynamical modes of the drill-string on torsional
vibrations has increased. In Chapter 2, a multi-modal model of the tor-
sional dynamics, exhibiting the most dominant torsional flexibility modes
and based on a finite-element method representation of a realistic drilling
system, is proposed as a basis for controller design. The model is based
on a jack-up drilling rig used to drill wells of over 6000 m. During op-
erations, stick-slip vibrations have been observed for this rig while it is
equipped with a modern SoftTorque system. This motivates the use of
this drill-string model as basis for the development of novel controller de-
sign methodologies;

• Novel controller design strategies for drill-string systems: two model-based
output-feedback controller design methodologies are proposed in this the-
sis.

More specifically, in Chapter 3, a novel nonlinear observer-based output-
feedback control strategy mitigating torsional stick-slip vibrations is devel-
oped. Using this controller, stick-slip vibrations can be mitigated and the
controller has several benefits compared to existing controllers. Existing
controllers often rely on one- or two degree-of-freedom (DOF) models for
the torsional drill-string dynamics only and are therefore unable to miti-
gate stick-slip vibrations in drilling systems with multiple dominant flexi-
bility modes. The particular benefits of the proposed nonlinear observer-
based output-feedback controller can be summarized as follows. First, it
can effectively deal with (realistic) drill-string models with multiple domi-
nant torsional flexibility modes, second, it is robust with respect to severe
velocity-weakening (and uncertainty) in the bit-rock interaction and, third,
it only employs surface measurements (which is important because down-
hole measurements are not available in practice). Additionally, a guaran-
tee for (local) asymptotic stability of the closed-loop reduced-order system
is given for bit-rock interaction laws satisfying a certain sector condition
(which is beneficial as the bit-rock interaction is subject to uncertainty in
practice).

In Chapter 4, a novel linear robust output-feedback controller methodol-
ogy to eliminate stick-slip vibrations is developed. The same controller
objectives as for the nonlinear observer-based output-feedback controller
are met; in addition, the controller is optimized to have robustness with
respect to uncertainty in the bit-rock interaction and closed-loop perfor-
mance specifications regarding measurement noise sensitivity and actuator
limitations are integrated in the controller design. Stability of the nonlin-
ear closed-loop system is also investigated and conditions on the bit-rock
interaction, in terms of a sector bound, for which the desired equilibrium
is locally asymptotically stable, have been derived. The combination of ro-
bustness with respect to uncertainty in the bit-rock interaction and includ-
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ing closed-loop performance specifications in the controller design while
guaranteeing (local) stability of the desired setpoint is an important im-
provement in the design of controllers to mitigate stick-slip vibrations in
drilling systems.

For both controllers, the robustness of the closed-loop system is investi-
gated in model-based case studies. The following robustness aspects are
key in the scope of practical applications, and are extensively studied in
this thesis: robustness with respect to changes in the bit-rock interaction
characteristics, increasing length of the drill-string, different desired angu-
lar velocities (i.e. increased operating envelope), and sensor and actuator
noise.

• Realization of a lab-scale drill-string system: based on the drill-string mod-
els developed, a lab-scale oil-field drill-string system has been designed and
realized, which exhibits the essential dynamics of a real drilling system.
With the development and use of such an experimental drill-string system
an improved understanding on the dynamical phenomena that occur while
drilling can be obtained. Moreover, this system is used for the experimen-
tal validation of the proposed controller design strategies. The need for a
new setup stems from the fact that the controllers proposed in this thesis
focus on the robustness with respect to multiple dominant torsional flex-
ibility modes in the drill-string dynamics. To investigate such robustness
aspect, it is important that the experimental setup represents drill-string
dynamics with multiple dominant flexibility modes.

• Experimental validation of controllers for drill-string systems: experimen-
tal validation of the designed controllers is an important intermediate step
towards field implementation of the controllers on a real rig. Using the de-
veloped experimental setup, controllers can be extensively tested in differ-
ent scenarios to validate the robustness of the controller design strategies.
The industrial SoftTorque controller is implemented on the setup and used
as a benchmark control system. The response of the experimental setup
matches very well with the response of the drill-string model in simula-
tions (i.e. stick-slip vibrations are observed), which illustrates that the
setup is able to accurately emulate the drill-string dynamics to be inves-
tigated. The linear robust output-feedback controller and state-feedback
controller (the latter representing a step towards implementation of the
observer-based output-feedback controller) are also implemented and ex-
perimentally validated on the setup. Both controllers successfully stabilize
the desired angular velocity and therewith mitigate stick-slip vibrations
on the experimental setup in realistic scenarios in which the SoftTorque
system can not.

• Modelling and analysis of passive tools for the mitigation of stick-slip vibra-
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tions and rate-of-penetration increase: a modelling and analysis approach
for a drill-string system including the anti stick-slip tool (AST) developed
by Tomax (see [102]) is developed. Despite numerous successful applica-
tions of the tool in the field, a fundamental physics-based explanation of
the working principle of the tool is lacking to this date. In this context, an
existing drill-string model of the coupled axial and torsional dynamics is
extended with a model of the anti stick-slip tool, resulting in a nonlinear
(non-smooth) drill-string model with state-dependent delay. A simula-
tion tool is developed to numerically obtain the response of the drill-string
model and the dynamic behavior of the key variables of the drill-string sys-
tem is investigated based on the simulation results. Moreover, we perform
dynamic analyses on the drill-string dynamics including the anti stick-slip
tool and compare the results with a benchmark model without the tool to
assess the effectiveness of the tool in mitigating stick-slip vibrations. The
analyses include a stability analysis based on a linearization approach for
delay-differential equations with state-dependent delays and a two time-
scale analysis. Finally, a (preliminary) study towards the effect of the AST
on the rate-of-penetration (ROP) is performed based on the simulation re-
sults of the nonlinear model.

1.3 Outline

The chapters 3, 4 and 7 are written as research papers, and are therefore self
contained. Each of these chapters can be read independently, which might cause
some overlap between the chapters. The Chapters 5 and 6 contain a descrip-
tion of the designed lab-scale drill-string setup and the experimental results,
respectively. The reading of these chapters requires some prerequisites from
Chapters 2-4.

Chapter 2 presents a model of the torsional dynamics of a drilling system.
The model is based on a real drilling system and serves as a basis for the con-
troller design methodologies that are presented in Chapters 3 and 4. Before going
into detail on the specific drill-string model, a concise review about modelling
of drilling dynamics is given.

In Chapter 3, a nonlinear observer-based output-feedback controller design
methodology is proposed to mitigate torsional stick-slip vibrations in drilling
systems. A complete proof regarding the stability of the closed-loop system is
provided and the proposed control strategy is validated by application to a FEM
model.

Another controller design methodology is proposed in Chapter 4, this con-
troller design method is based on linear robust control techniques. A controller
synthesis strategy is developed to optimize the robustness with respect to uncer-
tainty in the bit-rock interaction, while at the same time satisfying performance
objectives related to e.g. measurement noise sensitivity. A stability analysis
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of the (nonlinear) closed-loop system is performed and the control strategy is
validated by application to the same FEM model as used in Chapter 3.

Chapter 5 presents the design of an experimental drill-string system. This
system is designed to represent the dominant dynamics of an oil-field drill-string
system. This system can be used for the experimental validation of the proposed
controller design strategies and serve as an intermediate step towards field im-
plementation of the controllers on a real rig.

The results of the experiments with the drill-string setup are presented in
Chapter 6. First, identification experiments to determine the parameters of
the setup are discussed. Subsequently, the results of the experiments to validate
the controller design methodologies are presented.

Chapter 7 presents the modelling and analysis approach for the assessment
of a down-hole anti stick-slip tool. The dynamic behavior of the system includ-
ing the tool is investigated based on simulation results and compared with a
benchmark model without tool. Moreover, dedicated dynamic analyses on the
drill-string dynamics including the anti stick-slip tool are performed to assess its
effectiveness to mitigate stick-slip vibrations and to increase ROP.

Finally, conclusions and recommendations for future research are presented
in Chapter 8.





Chapter 2

Modelling of the torsional
drill-string dynamics

2.1 Introduction

In this chapter, a model of the torsional dynamics of a drilling system is pre-
sented. The model is based on a real drilling system and serves as a basis for the
controller design methodologies that will be presented in the remainder of this
work. Before going into detail on the specific drill-string model, first a concise
review about modelling of drilling dynamics is given. Extensive overviews re-
garding modelling of the drilling dynamics can be found in [109] and [85,98,131],
where the latter ones mainly focus on the modelling of torsional vibrations.

In Section 2.2, a short overview of different drill-sting models is given, with a
focus on models regarding the torsional dynamics suitable for controller design.
In Section 2.3, the drill-string model is presented that will be used for controller
design in later chapters. Stability properties of the model will be presented in
Section 2.4 and a simulation result of the drill-string system in closed-loop with
a currently used industrial controller is shown in Section 2.5. Finally, a short
summary is given in Section 2.6.

2.2 Modelling of the drill-string dynamics

Drilling systems, as schematically shown in Figure 2.1, are used to drill deep
wells for the exploration and production of oil and gas, mineral resources and
geo-thermal energy. These drilling systems can be roughly divided in three parts;
a drill bit at the bottom of the borehole for rock cutting, a drill-string to transmit
torque to the bit and a top drive at surface to drive the system. The drill-string
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Top drive

Rig

Bottom hole
assembly

Bit

Drill pipe

Figure 2.1: Schematic drilling system (adapted from [88]).

is a long and slender structure which can be several kilometers in length. The
upper part of the drill-string consists of drill pipe and makes up the majority
of the drill-string back up to the surface. The lower part of the drill-string is
called the bottom hole assembly (BHA). Often the bit is considered as part of the
BHA; in addition, the BHA consists of drill collars, which are heavy, thick-walled
tubes used to apply weight to the bit and drilling stabilizers to keep the assembly
centered in the hole. The BHA may also contain other components such as a
down-hole motor, a rotary steerable system, vibration absorbers (shock subs),
measurement while drilling (MWD), and logging while drilling (LWD) tools.

Surface and down-hole measurements [20, 69, 86] show that drilling systems
experience different types of oscillations, which significantly decrease the drilling
rate-of-penetration due to damage to the drill bit (e.g. bit tooth wear), the drill
pipes (e.g. failure due to fatigue) and the bottom hole assembly. Different modes
of vibration, such as axial, lateral and torsional vibrations, lead to bit bounc-
ing, whirling and torsional stick-slip, respectively. Reduced drilling efficiency
due to vibrations has led to a lot of research interest in this field, since it can
cost operations millions of dollars for each drilling campaign. The different
types of vibrations in drilling systems are generally quite complex in nature.
They are intimately coupled together both linearly and nonlinearly, and occur
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simultaneously [16]. Investigation of the fully coupled dynamics is treated in
for example [16, 94]. Also several studies investigating the interaction between
two of the three modes of vibration can be found in literature. Many studies
investigated for example the coupling between the axial and torsional dynam-
ics [6, 32, 37, 93, 100, 128], but also the coupled lateral-torsional dynamics (see
e.g. [55, 67, 76, 127]) and axial-lateral dynamics (e.g. [15, 29, 126]) have been in-
vestigated. However, most studies focus on one of the modes of vibrations, such
as in [33, 70] for the axial vibrations, in [31, 49, 59] for the lateral vibrations,
while in [11, 14, 61, 63, 75, 77, 114] the focus is on torsional vibrations. The list
of references given above is far from complete, but illustrates the interest in the
modelling of drill-string dynamics for the purpose of analyzing different modes of
vibration. For an extended overview of oil well drilling systems from a vibrations
perspective the reader is referred to [109].

In this thesis, the focus is on torsional vibrations and mitigation of those
torsional stick-slip oscillations (see Chapters 3-6), although also a model of the
coupled axial-torsional dynamics is used and further developed for the analysis
of a passive down-hole Anti Stick-slip Tool (AST) in Chapter 7. Modelling of
the torsional drill-string dynamics for controller design purposes is discussed in
more detail in the following section.

2.2.1 Modelling for control of torsional vibrations

Torsional stick-slip is characterized by phases in which the bit comes to a com-
plete stop (stick) and phases in which the bit rotates with several times the
desired angular velocity (slip). This type of vibrations results in excessive bit
wear, but is also detrimental for the tools in the BHA due to the high angular
velocities which are reached during the slip phases. Controllers for drilling sys-
tems therefore aim at drill-string rotation at a constant angular velocity and the
mitigation of torsional (stick-slip) oscillations.

For the design of controllers to mitigate torsional vibrations in drilling sys-
tems, most studies rely on one- or two degree-of-freedom (DOF) models for
the torsional drill-string dynamics only, see e.g. [19, 40, 51, 53, 103]. However,
directional wells are nowadays common in the drilling industry and it is not ev-
ident that these torsional “pendulum-type” models are still accurate enough in
inclined wells. Therefore, multi-DOF models or distributed-parameter models
are needed to analyze torsional stick-slip in drilling systems [131]. Moreover, in
models taking only the torsional dynamics into account it is generally assumed
that the resisting torque at the bit-rock interface can be modelled as a frictional
contact with a velocity-weakening effect. However, experiments using single cut-
ters, aiming at the identification of the bit-rock interaction law, have not revealed
any velocity-weakening effect [83]. Both these aspects in the modelling of the
torsional drill-string dynamics are discussed below.

Let us first focus on the number of degrees of freedom employed in drill-string
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models. Drill-string models vary from the 1 or 2-DOF pendulum models to
infinite-dimensional partial differential equation (PDE) models and multi-DOF
models, either extensions of the lumped parameter models or discretizations
of PDE models. Due to their simplicity, the pendulum models are very well
suited for controller design. Moreover, as the Soft Torque Rotary System [51]
has shown, controllers based on these type of models are able to mitigate stick-
slip oscillations and are therefore widely used in industry. On the other hand,
these models are of course not able to describe all dynamical properties of a
drill-string system. In fact, increasing demands on the operating envelope and
a tendency towards drilling deeper and inclined wells impose higher demands
on the controllers used in drilling systems and therewith, also on the drill-string
models used for controller design. Two main reasons for the deficiency of cur-
rently used industrial controllers are the influence of multiple dynamical modes
of the drill-string on torsional vibrations [82,96] and uncertainty in the bit-rock
interaction.

A reported drawback of the use of finite-dimensional models is that these
models neglect the time delay needed by the torsional waves to propagate in
the drill-string. To solve this issue the drill-string torsional dynamics can be
represented by a linear wave equation subject to (nonlinear) boundary conditions
for the top drive and frictional processes, see e.g. [4,10,62,115]. Moreover, recent
results as presented in e.g. [10,30] show that linear wave equation representations
of the drill-string can also be used for controller design. However, these methods
require assumptions on the bit-rock interaction and/or trivialize the BHA as
a single inertia. On the other hand, discretizations of the wave equation (see
[62]) result in a lumped parameter model, i.e. a finite-element representation
of the drill-string dynamics, where, of course, a suitable choice for the number
of elements in such discretization depends on the application at hand. Instead
of discretizing an infinite-dimensional model to obtain a multi-DOF drill-string
model, multi-DOF drill-string representations (i.e. FEM representations) can
also be based on the properties of the drill-string. In fact, these multi-DOF
models are extensions of the pendulum models, where only the BHA inertia (1-
DOF models) or both the BHA and top drive inertia (2-DOF models) are taken
into account. One can also think of models where the pipe sections and/or the
BHA are divided in multiple sections, each section is then represented by an
equivalent inertia and these inertias are lumped together to represent the entire
drill-string. The simplest extension of the pendulum models is a 3-DOF model,
with an additional inertia to represent the drill pipes, see [80], or a 4-DOF model
with inertia representing the top drive, drill pipes, drill collars and the bit as
in [81].

In this thesis, a multi-modal drill-string model is used and this finite-element
model is based on a real drill-string configuration, in which elements represent
equivalent pipe sections. This type of model is able to accurately describe the
drill-string dynamics. The propagation time of torsional waves in the drill-string
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is approximated (in the frequency range relevant for torsional vibrations) by
the induced phase lag due to the lumped elements of the finite-element model.
Additionally, the bit-rock interaction as well as drill-string borehole interactions
can be readily included in the model. Moreover, this model form is suitable
for model-based controller design techniques, such as H∞-control and observer-
based controller design approaches, as developed in this thesis in Chapters 3 and
4.

In models that only take the torsional drill-string dynamics into account,
it is generally assumed that the resisting torque at the bit-rock interface can
be modelled as a frictional contact with a velocity-weakening effect as reported
in [11, 115]. This decrease in torque-on-bit for increasing rotational velocity is
recognized as the cause of the stick-slip phenomenon. On the other hand, it
has to be noted that these experimental results are obtained by averaging the
torque-on-bit over multiple revolutions. As already mentioned, experiments with
a single cutter [83] show that the rate effects are not a constitutive property of
the bit-rock interface. Investigation of the axial and torsional dynamics, coupled
using the rate-independent bit-rock interaction law developed in [22], led to the
model as presented in [93]. In this approach, both the axial and torsional dynam-
ics are included in the modelling of the drill-string dynamics and coupled via the
bit-rock interaction law. In the original model, a characterization of the drilling
structure by a 2-DOF system is used, while in [37] an extension is made by us-
ing a continuum representation of the drill-string. The used bit-rock interaction
model in these models takes into account both cutting and frictional contact
and the rate-independent laws are consistent with with laboratory results from
single cutter experiments. Analysis of this type of model is mainly based on the
2-DOF model representations, see e.g. [21,38,79,93]. The analyses show that the
axial dynamics exhibits a stick-slip limit cycle, whose properties are dependent
on the rotational speed. This axial limit cycle generates an apparent velocity-
weakening effect in the torsional dynamics, leading to torsional vibrations and
stick-slip. Hence, the axial dynamics is responsible for the onset of torsional
vibrations. This modelling approach is also used in Chapter 7 to analyze the
Anti Stick-slip Tool (AST), since this down-hole tool is based on the coupling
between the axial and torsional dynamics. However, the observation that such
coupling still effectively leads to a velocity-weakening effect of the torque-on-bit
with respect to the bit rotational velocity motivates to adopt a modelling-for-
control approach for drill-string dynamics involving the torsional dynamics only,
as pursued in Chapters 2-6. The drill-string model used in these chapters is
a multi-DOF drill-string representation of the torsional dynamics, including a
velocity-weakening bit-rock interaction model and resisting torques at multiple
elements to model the interaction between the borehole and the drill-string. The
modelling approach is discussed in more detail in Section 2.3.
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2.3 Drill-string model

The system we will investigate is a realistic drill-string model of an offshore jack-
up drilling rig and the reservoir sections of the wells are drilled with a 6” PDC
bit to reach depths of >6000 m and with an inclination angle up to 60◦, resulting
in significant resistive torques along the drill-string. The rig is equipped with
an AC top drive and fitted with a modern SoftTorque system [64]. However, for
this depth and hole size, stick-slip vibrations have been observed in the field for
this rig [39], as shown in Figure 2.2. In this figure, measurement data of the real
rig is shown. The top drive angular velocity (RPM) and top drive torque (TQ)
show severe oscillations, indicating stick-slip at the bit. In addition, the stick-
slip severity indicator (SS) also shows high values which is a result of (stick-slip)
oscillations of the BHA.

A finite-element model of this drilling system, which represents a drill-string
of 6249 m in length, has been developed and the simulation results of this model
have been validated with field data for a range of operational conditions (such as
weight-on-bit (WOB) and angular velocity). The 18-DOF finite-element model is
obtained by representing the drill-string by a number of equivalent pipe sections
in order to accurately described the torsional dynamics relevant for stick-slip
vibrations. The model is validated by comparing the simulations of the nonlinear
model (i.e. including interaction torques) with field measurements of the drill-
string system. Figures 2.3 and 2.4 show two cases of this validation study, i.e. the
simulation results of the finite-element model are compared with the field data
under two different operating conditions, in both cases the drill-string system
exhibited stick-slip vibrations at the bit. As can be seen from these figures, the
simulation results match with the field data both in terms of the amplitude and
the frequency of the oscillations. The latter observations further motivate the
usage of the developed model as a basis for controller design in this thesis.

The finite-element method (FEM) representation of the drill-string is a model
with 18 elements. The element at the top is a rotational inertia to model the
top drive inertia, the subsequent elements are equivalent pipe sections based on
the dimensions and material properties of the drill-string, see Appendix A.1 for
more details. The resulting model can be written as

Mθ̈ +Dθ̇ +Ktθd = SwTw(θ̇) + SbTbit(θ̇1) + StTtd (2.1)

with the rotational displacement coordinates θ ∈ Rm with m = 18, the top
drive motor torque input Ttd ∈ R being the control input, the bit-rock inter-
action torque Tbit ∈ R and the interaction torques Tw ∈ Rm−1 between the
borehole and the drill-string acting on the nodes of the FEM model. The co-

ordinates θ =
[
θ1 · · · θm

]>
represent the angular displacements of the nodes of

the finite-element representation. Next, we define the difference in angular posi-

tion between adjacent nodes as follows: θd :=
[
θ1 − θ2 θ2 − θ3 · · · θm−1 − θm

]>
.

In (2.1), the mass, damping and stiffness matrices are, respectively, given by
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Figure 2.2: Field data of the drilling rig under investigation, indicating
severe stick-slip oscillations [39] (desired angular velocity is
approximately 50 rpm).

Figure 2.3: Comparison between a simulation result of the FEM model
and actual field data of the rig (top drive torque and top
drive velocity), the desired angular velocity is approximately
50 rpm [39].
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Figure 2.4: Comparison between a simulation result of the FEM model
and actual field data of the rig (top drive torque and top
drive velocity), the desired angular velocity is approximately
140 rpm [39].

M ∈ Rm×m, D ∈ Rm×m and Kt ∈ Rm×m−1, the matrices Sw ∈ Rm×m−1,
Sb ∈ Rm×1 and St ∈ Rm×1 represent the generalized force directions of the
interaction torques, the bit torque and the input torque, respectively. The coor-
dinates θ are chosen such that the first element (θ1) describes the rotation of the
bit and the last element (θ18) the rotation of the top drive at surface, as illus-
trated in Figure 2.5. The interaction between the borehole and the drill-string
is modelled as Coulomb friction, that is

Tw,i ∈ Ti Sign
(
θ̇i

)
, for i = 2, . . . ,m, (2.2)

with Ti representing the amount of friction at each element and the set-valued
sign function defined as

Sign (y) ,




−1, y < 0
[−1, 1] , y = 0
1, y > 0.

(2.3)

Note that possible viscous effects between the drill-string and the borehole are
captured in the damping matrix D, which motivates that only Coulomb effects
are taken into account in the interaction torques Tw. The bit-rock interaction
model is given by

Tbit(θ̇1) ∈ Sign
(
θ̇1

)(
Td + (Ts − Td) e−vd|θ̇1|

)
(2.4)
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θ2

θ17
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Figure 2.5: Schematic representation of the 18-DOF finite-element
method model.

with Ts the static torque, Td the dynamic torque and vd := 30
Ndπ

indicating
the decrease from static to dynamic torque. A schematic representation of the
bit-rock interaction is shown in Figure 2.6. For typical parameter settings the
ratio between Ts and Td is in the range 2-5, i.e. the static torque is 2 to 5 times
higher than the dynamic torque. Moreover, typical parameter settings for Nd
are such that the decrease from static to dynamic torque is mainly between 0
and 20-30 rpm, which results in a severe velocity-weakening effect in the bit-rock
interaction for low angular velocities.

The model (2.1), (2.2) and (2.4) together forms a differential inclusion that
we can write in state-space Lur’e-type form as follows:

ẋ = Ax+But +Gv +G2v2

q = Hx
q2 = H2x
y = Cx
v ∈ −ϕ(q)
v2 ∈ −φ(q2)

(2.5)

where x :=
[
θd θ̇

]> ∈ R2m−1 is the state, q = θ̇1 ∈ R and q2 :=
[
θ̇2 · · · θ̇m

]> ∈
Rm−1 are the angular velocity arguments of the set-valued nonlinearities ϕ and
φ, respectively. The bit-rock interaction torque is given by v ∈ R and the drill-
string-borehole interaction torques are given by v2 ∈ Rm−1, ut := Ttd ∈ R is

the control input and y :=
[
ωtd Tpipe

]> ∈ R2 is the measured output. Note
that the latter implies that only surface measurements will be employed, which
is an important requirement for the controllers to be designed in the following
chapters. The angular velocities of the top drive and the bit are defined as
ωtd := θ̇18 and ωbit := θ̇1, respectively, and the pipe torque Tpipe is the torque



20 Chapter 2. Modelling of the torsional drill-string dynamics

Td

−Td

Ts

−Ts

ωbit

Tbit

Figure 2.6: Schematic representation of the bit-rock interaction Tbit (2.4).

in the drill-string directly below the top drive. A block diagram of the system
(2.5) is shown in Figure 2.7. The matrices A, B, C, G, G2, H and H2 in (2.5),
with appropriate dimensions are given by

A =

[
Om−1×m−1 a
−M−1Kt −M−1D

]
, a =




1 −1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 1 −1



, (2.6)

B =

[
Om−1×1

M−1St

]
, (2.7)

C =

[
O1×2m−2 1
JtdM

−1Kt JtdM
−1D

]
, (2.8)

G =

[
Om−1×1

M−1Sb

]
, (2.9)

G2 =

[
Om−1×m−1

M−1Sw

]
, (2.10)

H =
[
O1×m−1 1 01×m−1

]
, (2.11)

H2 =
[
Om−1×m Im−1

]
, (2.12)
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ẋ = Ax+But +Gv +G2v2
q = Hx
y = Cx

ϕ(·)

−

v = −Tbit

q = ωbit

Tpipe

ωtd yut = Ttd

v2 = −Tw

φ(·)

−

q2 =
[
θ̇2 · · · θ̇18

]

Figure 2.7: Block diagram of the open-loop system (2.5) in state-space
Lur’e-type form.

with Jtd the top drive inertia, Ik the k by k identity matrix and Ok×l a k
by l matrix with all zero entries. Note that ϕ(q) := Tbit(ωbit) and φ(q2) :=[
Tw,2(θ̇2) · · · Tw,m(θ̇m)

]>
. The relevant frequency response functions for the

linear part of the drill-string dynamics (2.5), of the drill-string configuration
given in Appendix A.1, are shown in Figures 2.8-2.10.

To facilitate controller synthesis, the drill-string dynamics (2.5) are rewritten
in a specific form. The desired constant angular velocity ωeq > 0 for the drill-
string can be associated with a desired equilibrium xeq for the state of the system.
To ensure that xeq is indeed an equilibrium of the closed-loop system, the control
input ut := uc + ũ is decomposed in a constant feedforward torque uc (inducing
xeq) and the feedback control input ũ. Therefore, assume that the resistive
torques along the drill-string are constant and can be compensated by uc. From
(2.2) it follows that the resistive torques along the drill-string (Tw,i) are constant

if θ̇i > 0, for i = 2, . . . ,m. Thus by assuming that θ̇i is close (enough) to the
desired velocity ωeq > 0 the resistive torque along the drill-string can indeed
be compensated for by uc. In practical drilling situations this is a reasonable
assumption, since the drilling system should operate at (or close to) a constant
(positive) angular velocity. Especially, since a modelling-for-control approach is
adopted in this work, i.e. the model has to be suitable for controller design, and
the controllers aim at locally stabilization of the desired setpoint. The (constant)
equilibrium xeq and feedforward torque uc can be obtained from the equilibrium
inclusion of system (2.5):

Axeq −Gϕ(Hxeq)−G2φ(H2xeq) +Buc 3 0 (2.13)
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Figure 2.8: Frequency response function of the 18-DOF model from input
torque Ttd to bit velocity ωbit.
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Figure 2.9: Frequency response function of the 18-DOF model from input
torque Ttd to top drive velocity ωtd.
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Figure 2.10: Frequency response function of the 18-DOF model from bit
torque Tbit to bit velocity ωbit, i.e. bit-mobility.

Next, let ξ := x − xeq be a perturbation coordinate with respect to the equi-
librium and apply a linear loop transformation such that the slope of the non-
linearity ϕ at the equilibrium can be changed. This transformation is used in
the controller design methodologies in Chapters 3 and 4. For the moment, as-
sume that the slope of the nonlinearity is changed with a factor δ and define the
transformed nonlinearity ϕ̃ (q) := ϕ (q)−ϕ (Hxeq) + δ (q −Hxeq), as illustrated
in Figure 2.11. This results in the following state-space representation of the
transformed drill-string dynamics in perturbation coordinates:

ξ̇ = Atξ +Bũ+Gṽ
q̃ = Hξ
ỹ = Cξ
ṽ ∈ −ϕ̃ (q̃)

(2.14)

with At := A + δGH, ỹ := y − Cxeq, q̃ := q − Hxeq, ϕ̃ (q̃) = ϕ (q̃ +Hxeq) −
ϕ (Hxeq) + δq̃ and ṽ := v − veq − δq̃.

2.3.1 Different model representations

Different representations of the model, which is introduced in the previous sec-
tion, are used in this thesis. In this section, an overview of the different model
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Figure 2.11: Transformed bit-rock interaction model with and without
loop transformation to change the slope of the nonlinearity ϕ̃.

representations is given, without going into detail on the different models. Fig-
ure 2.12 shows the different representations of a drilling system that will be used.

The FEM model introduced in Section 2.3 is based on a real drilling system
and field data is used to validate the FEM model. The FEM model has, as
the name suggests, a finite number of degrees of freedom to model the infinite-
dimensional real drilling system. The considered FEM model of the drill-string
system has 18 elements and a state-space realization with 35 states (note that
the absolute position of the drill-string omitted).

For multiple reasons, such as limiting controller complexity and feasibility of
the lab-scale realization of a drilling system, reduced-order models will be used
in this thesis. The purpose of these reduced-order models is to approximate the
higher-order FEM model with a reduced number of states, while still preserving
the key system properties. Typically, in this thesis, the reduced-order models
have a model order (number of states) of 7 or 9. As mentioned before, previous
studies investigating the torsional dynamics of a drill-string system often used 1
or 2-DOF models to represent a drilling system. In this thesis, models with at
least 4 degrees of freedom are considered, because field observations have revealed
that also higher flexibility modes of the drill-string play a role in the onset of
stick-slip vibrations [82]. The choice to take at least 4 degrees of freedom into
account stems from the fact that the first three resonance modes, with resonance
frequencies f1 ≈ 0.15, f2 ≈ 0.38 and f3 ≈ 0.53 Hz, are dominant in the drill-
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Figure 2.12: Schematic overview of the different system and model repre-
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real drilling system, next the finite-element representation, as
introduced in Section 2.3, is schematically shown, followed by
a reduced-order model representation and on the right-hand
side a photo of the lab-scale realization of the drill-string
system is shown.

string dynamics (see Figures 2.8-2.9). Therefore, those first three modes and the
rigid body mode need to be accurately captured by the reduced-order model.

For the controllers to have practical relevance they should be able to stabilize
the desired setpoint of the 18-DOF FEM model. Validation of the controller
design strategies is based on analysis of the closed-loop dynamics and simulation
studies of the controller applied to the 18-DOF model. However, the step from
a simulation study to implementation of the controller on a real rig is still quite
large. Therefore, as an intermediate step, a lab-scale drill-string system has been
developed. The design of this experimental setup is presented in Chapter 5. This
setup is designed based on a reduced-order 4-DOF drill-string model and again
represents the dominant flexibility modes of the 18-DOF model. The setup is
used to experimentally validate the controller design methodologies developed
in this thesis.

Summarizing, all the drill-string models used for controller design in this the-
sis take multiple flexibility modes of the drill-string into account. Moreover, all
these models are designed such that they represent the most important dynamics
of the real drilling system.
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2.4 Stability of the drill-string dynamics

In this section, the stability of the desired equilibrium xeq of the open-loop drill-
string dynamics (2.5) is investigated. Investigation of the (local) stability of the
equilibrium point of (2.5), with ut = uc, is equivalent to investigation of the
stability of origin of the transformed system (2.14), with δ = 0 and ũ = 0. Since
the main interest is in the local stability of the equilibrium point we linearize
the nonlinear dynamics and determine the eigenvalues of the linearized system
in order to investigate the stability.

The only nonlinear term in the transformed drill-string dynamics involves
the transformed bit-rock interaction term ϕ̃. Hence, the system is written in
Lur’e-type form with only the nonlinearity ϕ̃ in a negative feedback loop. The
linearization of

ξ̇ ∈ Aξ −Gϕ̃ (q̃) (2.15)

around the origin is obtained as follows:

ξ̇ = Aξ − G∂ϕ̃
∂q̃

∂q̃
∂ξ

∣∣∣
ξ=0

ξ

= Aξ −GH ∂ϕ̃
∂q̃

∣∣∣
ξ=0

ξ

= (A+ δlinGH) ξ,

(2.16)

where δlin := − ∂ϕ̃
∂q̃

∣∣∣
ξ=0

. Note that we linearize around a desired equilibrium

xeq associated with a desired constant angular velocity ωeq > 0, such that ϕ̃ is
continuously differentiable in a neighbourhood of the equilibrium. Due to the

velocity-weakening effect in the bit-rock interaction, ∂ϕ̃
∂q̃

∣∣∣
ξ=0

is typically smaller

than zero, thus δlin > 0. Note that the effect of δlin is equivalent to the effect of
δ as defined in the transformed drill-string dynamics (2.14).

The eigenvalues λi, i = 1, . . . ,m, of (A+ δlinGH) are determined for different
values of δlin to investigate the stability of the open-loop dynamics. For δlin = 0
the system has an eigenvalue λ = 0, corresponding to the rigid body mode of the
system. For increasing values of δlin the right-most eigenvalue (corresponding
to one of the flexibility modes of the system) moves further into the right-half-
plane (RHP) of the complex plane, indicating an unstable mode of the system,
see Figure 2.13. The fact that the right-most eigenvalue moves further into
the RHP indicates that damping of this mode decreases for increasing values
of δlin. That is, increasing δlin corresponds to adding negative damping to
the system. This observation confirms that the velocity-weakening effect in the
bit-rock interaction has a destabilizing effect on the drill-string dynamics. In
other words, a steeper slope in the bit-rock interaction, typically at low angular
velocities, destabilizes the system. As can be seen in Figure 2.6, the slope of
the bit-rock interaction approaches zero for increasing angular velocities. Thus
increasing the angular velocity reduces the effect of negative damping. This
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corresponds to observations in the field where increasing the angular velocity
often reduces the effect of stick-slip vibrations. In Chapters 3 and 4 of this
thesis, stability properties of the nonlinear closed-loop drill-string system (i.e.
including the proposed feedback controllers) are also investigated.

2.5 Simulation of the drill-string dynamics

The objective of the controller design strategies in Chapters 3 and 4 is to elim-
inate torsional stick-slip vibrations in drilling systems. An underlying objec-
tive is to enlarge the operating envelope of drilling systems in terms of rate-of-
penetration (ROP) and angular velocity (RPM) we note that current industrial
controllers are not always able to eliminate stick-slip vibrations under the im-
posed operating conditions. In this section, we will not go into detail on the
controllers; however some simulation results of the drill-string system (2.5) in
closed-loop with an existing industrial controller (based on [51]) will be shown
to illustrate the typical response of the drilling system when stick-slip vibrations
occur.

The industrial controller is a so-called classical SoftTorque system. This
controller basically is a PI-controller based on feedback of the surface angular
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velocity that aims at damping of (only) the first torsional mode of the drill-
string. For the simulation results shown in Figure 2.14 the desired equilibrium
velocity, ωeq, for the drilling system is 50 rpm. The top drive angular velocity,
bit angular velocity and top drive torque are shown in this figure. From the bit
angular velocity the stick-slip oscillations can be clearly recognized, i.e. the bit
comes to a complete stop in the sticking phase and rotates with approximately
10 times the desired angular velocity during the slipping phase. This illustrates
that the SoftTorque controller is not able to stabilize the desired equilibrium un-
der the imposed operating conditions. A possible explanation could be the lack
of damping of higher flexibility modes of the drill-string. Note that the stick-
slip limit cycle in this simulation result consists of two successive slip phases
relatively short after each other followed by a longer sticking period before the
cycle is repeated. This clearly shows the effect of multiple dominant flexibility
modes of the drill-string, because if only one flexibility mode would be respon-
sible for stick-slip, the stick-slip limit cycle is characterized by one peak within
a period associated to a single frequency. It has to be mentioned that the simu-
lation results presented here match very well with the field data obtained from
measurements during drilling operation for this drilling system (see Figures 2.3
and 2.4). During this drilling operation the presence of stick-slip vibrations
could be recognized from the surface torque and angular velocity, even with the
SoftTorque controller turned on.

2.6 Summary

In this thesis, the objective is to design controllers to mitigate stick-slip vibra-
tions in drilling systems. A model-based control perspective is taken to design
these controllers and therefore a modelling-for-control approach involving the
torsional dynamics only, in combination with a velocity-weakening bit-rock in-
teraction model, is adopted. In Section 2.3, the drill-string model is introduced
and the stability analysis in Section 2.4 showed that the open-loop dynamics
are unstable. Moreover, it is shown that the velocity-weakening effect in the
bit-rock has a destabilizing effect. The simulation result in Section 2.5 shows
that a currently used industrial controller is unable to stabilize the desired an-
gular velocity, which shows the importance of novel controller design strategies
to eliminate stick-slip vibrations in drilling systems.

In this thesis, two different controller design strategies are proposed to elim-
inate stick-slip oscillations in drilling systems. First, in Chapter 3, a nonlin-
ear observer-based output-feedback controller design methodology is developed.
This strategy allows to design an output-feedback controller for multi-modal
drill-string systems while guaranteeing (local) asymptotic stability of the desired
operating velocity. Second, a linear output-feedback controller design strategy,
based on robust control techniques is considered in Chapter 4. With this strat-
egy we can also design (locally) stabilizing controllers for multi-modal drill-string
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systems and in addition, performance specifications (e.g. measurement noise sen-
sitivity and actuator limitations) can be taken into account in the controller
design.



Chapter 3

Design of an observer-based
output-feedback controller

3.1 Introduction

Drilling systems are used to drill deep wells for the exploration and production
of oil and gas, mineral resources and geo-thermal energy. Such a drilling system
is schematically shown in Figure 2.1. Surface and down-hole measurements
[20, 69, 86] indicate that these systems experience different types of oscillations,
which significantly decrease the drilling rate-of-penetration and can damage the
drill bit (e.g. bit tooth wear), the drill pipes (e.g. twisted pipe) and the bottom
hole assembly. Different modes of vibration, such as axial, lateral and torsional
vibrations, lead to bit bouncing, whirling and torsional stick-slip, respectively.
The focus of the current chapter is on the aspect of mitigation of torsional stick-
slip oscillations by means of control as these vibrations are known to be highly
detrimental to drilling efficiency, reliability and safety.

To support the design of controllers to eliminate torsional vibrations, most
studies rely on one- or two degree-of-freedom (DOF) models for the torsional
drill-string dynamics only, see e.g. [12, 19, 40, 51, 53, 103]. In these models, it
is generally assumed that the resisting torque at the bit-rock interface can be
modelled as a frictional contact with a velocity-weakening effect as reported
in [11, 115]. In fact, modelling of the coupled axial and torsional dynamics, as
for example in [93], shows that the velocity-weakening effect in the torque-on-
bit (TOB) is a consequence of the drilling dynamics, rather than an intrinsic
property of the bit-rock interface. The fact that such coupling effectively leads
to a velocity-weakening effect of the TOB (see e.g. [6, 38]) motivates to adopt a

This chapter is based on [123]
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modelling-for-control approach for drill-string dynamics involving the torsional
dynamics only, while including velocity-weakening in the bit-rock interaction law,
as we will pursue in this chapter. To model the torsional drill-string dynamics
we use a finite-element method (FEM) representation of the drill-string. A dif-
ferent modelling approach is taken in [34,37], where infinite-dimensional models,
formulated in terms of partial differential equations, are considered. Using the
same approach as a basis, models in terms of delay-differential equations are
derived in [4, 9, 10, 99]. In [62], it is shown that discretizations of the infinite-
dimensional models resulting in a finite-element representation of the drill-string
dynamics can accurately describe the underlying drill-string dynamics leading to
torsional vibrations. Therefore, we will use such a finite-element method model
of the drill-string dynamics for the model-based controller design methodology
proposed in this chapter.

Different control strategies aiming to suppress torsional vibrations can be
found in literature. In [40], the use of torque feedback in addition to a speed
controller is investigated. The underlying idea is making the top rotary sys-
tem behave in a “soft” manner, hence the name Soft Torque Rotary System, see
also [51]. In these works, it is assumed that the drilling system behaves like a 2-
DOF torsional pendulum of which the first torsional mode can be damped using a
PI-controller based on feedback of the surface angular velocity. In [115,116], the
above SoftTorque approach is compared with a control method based on tor-
sional rectification, which outperforms the SoftTorque approach in simulation
studies by using improved torque feedback based on the twist of the drill-string
near the rotary table. Another type of PI-controller is developed in [80], where
a 3-DOF drill-string model is used for controller design. To do so, it is assumed
that the bit angular velocity can be measured; we note that down-hole measure-
ments for real-time control purposes are not available in practice. A linear H∞
controller synthesis approach is presented in [103]. Herein, the bit-rock interac-
tion, key in causing stick-slip, is not taken into account in the controller design
and stability analysis of the closed-loop dynamics. A control design approach,
where information of the nonlinear bit-rock interaction model is explicitly taken
into account in the controller synthesis, is proposed in [19,24,25]. Drawbacks of
the approaches in [19,103] are, firstly, the necessity of down-hole measurements
reflecting the twist of the drill-string between surface and bit, which can not be
measured in practice, and, secondly, the fact that only one torsional mode of the
drill-string is taken into account.

Increasing demands on the operating envelope and a tendency towards drilling
deeper and inclined wells impose higher demands on the controllers used in
drilling systems. Industrial controllers (such as SoftTorque) are not always able
to eliminate stick-slip vibrations under the imposed operating conditions [30,96].
Two main reasons for this deficiency are the influence of multiple dynamical
modes of the drill-string on torsional vibrations [82, 96] and the uncertainty in
the bit-rock interaction law.
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The main contribution of this chapter is a nonlinear output-feedback control
strategy mitigating torsional stick-slip vibrations while 1) only using surface
measurements, 2) taking into account a multi-modal drill-string model and 3)
taking into account severe velocity-weakening and uncertainty in the bit-rock
interaction. A preliminary version of this work has been presented in [122]. Ad-
ditional contributions of the current chapter are, firstly, an extensive robustness
analysis of the proposed controller, secondly, a validation of the proposed control
strategy by application to a high-order FEM model of the drill-string dynamics
and, thirdly, a complete proof regarding the stability of the closed-loop system.
The robustness analysis mainly focuses on implementation issues essential in
practice, such as measurement and actuator noise, changing dynamics due to
the increasing length of the drill-string while drilling and changing conditions
at the bit-rock interface (e.g. due to changing formation characteristics or bit
wear).

This chapter is organized as follows. Section 3.2 introduces the drill-string
model based on a finite-element model of a real-life rig and a reduced-order model
is derived to facilitate controller design. Subsequently, in Section 3.3 the control
problem is formulated. Next, in Section 3.4 we present a design approach for
nonlinear output-feedback controllers including a robust stability analysis of the
resulting (reduced-order) closed-loop system. Section 3.5 will present simulation
results illustrating the effectiveness of the proposed approach applied to the
reduced-order drill-string model. In Section 3.6 the controller design strategy is
validated by application to the full-scale finite-element drill-string model and a
stability analysis of the closed-loop system is performed. Next, in Section 3.7 the
robustness of the controller is investigated by means of simulation case studies
involving realistic drilling scenarios, for example increasing length of the drill-
string and disturbances due to sensor and actuator noise. Finally, the main
results of this work are discussed in Section 3.8.

3.1.1 Preliminaries

In support of the controller design result in Section 3.4.1, we present the following
definitions on input-to-state-stability (ISS) and the strict passivity property.

The concept of input-to-state stability has been introduced in [107]. Its local
version has first appeared in [108].

Definition 3.1. The system ẋ(t) ∈ F (x(t), e(t)) is locally input-to-state stable
(LISS) if there exist constants c1, c2 > 0, a function ρ of class KL and a function
µ of class K such that for each initial condition x(0) = x0, such that ‖x0‖ ≤ c1,
and each piecewise continuous bounded input function e(t) defined on [0,∞) and
satisfying supτ∈[0,∞) ‖e(τ)‖ ≤ c2, it holds that

• all solutions x(t) exist on [0,∞) and,

• all solutions satisfy
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‖x(t)‖ ≤ ρ (‖x0‖ , t) + µ

(
sup
τ∈[0,t]

‖e(τ)‖
)
, ∀t ≥ 0. (3.1)

Consider the linear time-invariant minimal state-space realization

ẋ = Ax+Gv
q = Hx+Dv

(3.2)

with the state x ∈ Rn, and input and output v, q ∈ R.

Definition 3.2. The system (3.2) or the quadruple (A,G,H,D) is said to be
strictly passive if there exist an ε > 0 and a matrix P = P> > 0 such that

[
A>P + PA+ εI PG−H>

G>P −H −D −D>
]
≤ 0. (3.3)

3.2 Drill-string dynamics model

The system we will investigate is a realistic drill-string model of a jack-up drilling
rig and the reservoir sections of the wells are drilled with a 6” bit to reach depths
of >6000 m and with an inclination angle up to 60◦, resulting in significant
resistive torques along the drill-string. The rig is equipped with an AC top
drive and fitted with a modern SoftTorque system [64]. However, for this depth
and hole size stick-slip vibrations have been observed in the field for this rig
[39]. A finite-element model of this drilling system has been developed and
the simulation results of this model have been validated with field data under
different conditions (such as weight-on-bit (WOB) and angular velocity), see
Figures 2.3 and 2.4.

The finite-element method (FEM) is used to construct a multi-modal tor-
sional drill-string model (with 18 elements). The element at the top is a ro-
tational inertia to model the top drive inertia, the subsequent elements are
equivalent pipe sections based on the dimensions and material properties of
the drill-string. The resulting model can be written as

Mθ̈ +Dθ̇ +Ktθd = SwTw(θ̇) + SbTbit(θ̇1) + StTtd (3.4)

with the coordinates θ ∈ Rm, where m = 18, the top drive motor torque in-
put Ttd ∈ R being the control input, the bit-rock interaction torque Tbit ∈ R
and the interaction torques Tw ∈ Rm−1 between the borehole and the drill-
string acting on the nodes of the FEM model. The coordinates θ represent
the angular displacements of the nodes of the finite-element representation.
Next, we define the difference in angular position between adjacent nodes as

follows: θd :=
[
θ1 − θ2 θ2 − θ3 · · · θ17 − θ18

]>
. In (3.4), the mass, damping and

“stiffness” matrices are, respectively, given by M ∈ Rm×m, D ∈ Rm×m and
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Kt ∈ Rm×m−1, the matrices Sw ∈ Rm×m−1, Sb ∈ Rm×1 and St ∈ Rm×1 rep-
resent the generalized force directions of the interaction torques, the bit torque
and the input torque, respectively. The coordinates θ are chosen such that the
first element (θ1) describes the rotation of the bit and the last element (θ18) the
rotation of the top drive at surface. The interaction between the borehole and
the drill-string is modelled as Coulomb friction, that is

Tw,i ∈ Ti Sign
(
θ̇i

)
, for i = 2, . . . , 18, (3.5)

with Ti representing the amount of friction at each element and the set-valued
sign function defined as

Sign (y) ,




−1, y < 0
[−1, 1] , y = 0
1, y > 0.

(3.6)

The bit-rock interaction model, including the velocity-weakening effect, is given
by

Tbit(θ̇1) ∈ Sign
(
θ̇1

)(
Td + (Ts − Td) e−vd|θ̇1|

)
(3.7)

with Ts the static torque, Td the dynamic torque and vd := 30
Ndπ

indicating
the decrease from static to dynamic torque. For this model, the parameters
are tuned such that a match between the simulation results and the (surface)
field data is obtained. The values of the parameters are given by Ts = 7700 Nm,
Td = 1700 Nm, Nd = 5 rpm and the resulting bit-rock interaction model is shown
in Figure 3.1. The model (3.4), (3.5) and (3.7) together forms a differential
inclusion that we can write in state-space Lur’e-type form as follows:

ẋ = Ax+But +Gv +G2v2

q = Hx
q2 = H2x
y = Cx
v ∈ −ϕ(q)
v2 ∈ −φ(q2),

(3.8)

where x :=
[
θd θ̇

]> ∈ R35 is the state, q := ωbit ∈ R and q2 :=
[
θ̇2 · · · θ̇18

]> ∈
R17 are the angular velocity arguments of the set-valued nonlinearities ϕ and
φ, respectively. The bit-rock interaction torque is given by v ∈ R and the drill-
string-borehole interaction torques are given by v2 ∈ R17, ut := Ttd ∈ R is the
control input and y := ωtd ∈ R is the measured output. Note that the latter
implies that only surface measurements will be employed in the output-feedback
control strategy proposed in Section 3.4. The angular velocities of the top drive
and the bit are defined as ωtd := θ̇18 and ωbit := θ̇1, respectively. The matrices
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Figure 3.1: Bit-rock interaction model.

A, B, G, G2, H and H2 in (3.8), with appropriate dimensions, are given by

A =

[
O17×17 a
−M−1Kt −M−1D

]
, a =




1 −1 0 · · · 0

0
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . . 0

0 · · · 0 1 −1


,

B =

[
O17×1

M−1St

]
, G =

[
O17×1

M−1Sb

]
, G2 =

[
O17×17

M−1Sw

]
,

H =
[
O1×17 1 O1×17

]
, H2 =

[
O17×18 I17

]

and C ∈ R35 indicates the measured output, where Ik the k-by-k identity matrix
and Ok×l a k-by-l matrix with all zero entries. Note that ϕ(q) := Tbit(ωbit) and

φ(q2) :=
[
Tw,2(θ̇2) · · · Tw,18(θ̇18)

]>
. The relevant frequency response functions

of (the linear part of) system (3.8) from inputs Ttd and Tbit to the outputs ωtd
and ωbit are shown in Figures 3.2-3.4.

3.2.1 Reduced-order model

In order to both facilitate the design of and to decrease the implementation bur-
den of the resulting observer-based output-feedback controllers (see Section 3.4),
we apply model reduction to obtain a low-order approximation of the drilling sys-
tem dynamics (3.8). Such reduced-order model approximates the input-output
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Figure 3.2: Frequency response function of the full-order and reduced-
order model from input torque Ttd to bit velocity ωbit.
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order model from input torque Ttd to top drive velocity ωtd.
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Figure 3.4: Frequency response function of the full-order and reduced-
order model from bit torque Tbit to bit velocity ωbit, i.e. the
bit-mobility.

behavior from inputs ut and v to outputs y and q. The inputs and outputs re-
lated to the drill-string-borehole interaction (Tw,i) are not taken into account in
the reduction process, but can be approximated using the transformation matrix
obtained from the reduction procedure. With this assumption, system (3.8) can
be represented as a Lur’e type system Σ =

(
Σlin, ϕ

)
, consisting of high-order

linear dynamics Σlin with a single static output-dependent nonlinearity ϕ, re-
lated to the bit-rock interaction, in the feedback loop. We will use the model
reduction approach for Lur’e-type systems as proposed in [7], which employs a
linear model reduction technique (such as balanced truncation) for the reduction
of the linear part of the Lur’e-type system. In doing so, we combine the inputs
ut and v and the outputs y and q, yielding the new input matrix

[
B G

]
and

the new output matrix
[
C> H>

]>
. With these inputs and outputs, applying

balanced truncation to the linear part of the Lur’e-type system results in the
reduced-order linear system Σlinr . Now, the reduced-order linear part is inter-
connected with the original nonlinearity yielding the reduced-order drill-string
system model Σr =

(
Σlinr , ϕ

)
.

Using the approach outlined above, we obtain a reduced-order model with
state xr ∈ Rmr . The equations of motion for the reduced-order system are
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written as (now again taking into account drill-string borehole interactions):

ẋr = Arxr +Brut +Grvr +G2,rv2,r

qr = Hrxr
q2,r = H2,rxr
yr = Crxr
vr ∈ −ϕ(qr)
v2,r ∈ −φ(q2,r)

(3.9)

and the bit-rock interaction as shown in Figure 3.1. The relevant frequency
response functions for the linear part of the reduced-order dynamics in (3.8) and
(3.9) are shown in Figures 3.2, 3.3 and 3.4. Clearly, the first four resonance modes
(and the rigid-body mode) are accurately captured in the reduced-order model.
The so-called bit-mobility, shown in Figure 3.4, describes the dynamics of the
drill-string system from bit torque input (Tbit) to bit angular velocity output
(ωbit). In other words, it indicates the sensitivity of the bit angular velocity
for disturbances in the bit-rock interaction torque. A lower magnitude of the
bit-mobility makes the drill-string system thus less sensitive for disturbances at
the bit (induced by the bit-rock interaction including a destabilizing velocity-
weakening effect) that could eventually lead to stick-slip oscillations. Therefore,
the bit-mobility gives an indication of the most important resonance modes in
the onset of stick-slip vibrations. It can be seen that the first three resonance
modes are dominant, which motivates the choice to reduce to a model order of
at least mr = 7. In the remainder of this chapter, a reduced-order model with
mr = 9 states is used. The choice for mr = 9 is such that it is sufficiently large to
capture the dominant modes and to reduce the model error due to reduction as
much as possible, while on the other hand, the model order is limited to obtain
a feasible controller and observer design.

3.3 Control problem formulation

In Section 3.3.1, we formulate the control problem and specify the controller
objectives. Additionally, in Section 3.3.2 we apply a loop transformation to the
model in (3.9) to render it amendable for controller design, discussed in detail
in Section 3.4.

3.3.1 Controller objectives

The desired operation of the drill-string system is a constant angular velocity
ωeq for the entire drill-string. So, the objective is to regulate the nonlinear drill-
string system to this setpoint by means of an observer-based output-feedback
controller. The available measurement for the controller is the top drive angular
velocity ωtd and the system can be controlled by the top drive torque Ttd. As
briefly mentioned in the introduction, the controller should
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1. locally stabilize the constant rotational velocity ωeq of the drill-string,
therewith eliminating torsional (stick-slip) vibrations;

2. be able to deal with severe velocity-weakening and uncertainty in the non-
linear bit-rock interaction ϕ;

3. be applicable to multi-modal drill-string models, i.e. effectively deal with
flexibility modes at higher frequencies.

3.3.2 Model reformulation

To facilitate controller synthesis, the drill-string dynamics (3.9) are rewritten in
a specific form. The desired constant angular velocity ωeq > 0 can be associated
with a desired equilibrium xr,eq for the state of the system. To ensure that xr,eq
is indeed an equilibrium of the closed-loop system, the control input ut = uc+ ũ
is decomposed in a constant feedforward torque uc (inducing xr,eq) and the
feedback control input ũ. If we assume that we can indeed operate the drill-
string system at positive angular velocity, the Coulomb friction terms Tw,i along
the drill-string do not affect the dynamics of the system, at least locally near the
desired operating condition, and can consequently be represented by constant
resistive torques. These constant resistive torques can then be compensated by
the feedforward torque. The equilibrium xr,eq and feedforward torque uc can be
obtained from the equilibrium condition of system (3.9) that has to satisfy the
algebraic inclusion

Arxr,eq −Grϕ (Hrxr,eq)−G2,rφ (H2,rxr,eq) +Bruc 3 0. (3.10)

Due to the reduction error introduced by the model reduction procedure (see
Section 3.2.1) the outputs qr and yr of the reduced-order system (3.9) do not
exactly match the outputs q and y of the original system (3.8). Moreover,
the outputs qr and yr of the reduced-order model are not necessarily equal,
although they represent the bit angular velocity and top drive angular velocity,
respectively. To obtain a unique equilibrium xr,eq associated to a specific desired
angular velocity ωeq, we have to introduce an additional requirement. For the
implementation of a reduced-order controller (as treated in Sections 3.5 and 3.6)
we require that yr,eq matches the desired equilibrium velocity ωeq. Therewith
satisfying the drillers setpoint at the top drive. Consequently, the approximated
bit angular velocity of the reduced-order model, i.e. qr,eq = Hrxr,eq, will be
slightly different from the desired equilibrium velocity ωeq. In other words, for
the reduced-order model, yr is not necessarily equal to qr. For the equilibrium
xr,eq of the reduced-order model we therefore require yr,eq = ωeq, consequently,
qr,eq will probably not exactly match ωeq.

Remark 3.1. In the case that the Coulomb friction due to the interaction be-
tween the drill-string and the borehole cannot be compensated for by the feedfor-
ward torque, these (nonlinear) interaction torques should be taken into account
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in the drill-string dynamics. Linear frictional effects (such as viscous damping)
can be incorporated in the system matrices. Nonlinear effects can be included in
a similar fashion as the bit-rock interaction, resulting in multiple nonlinearities
instead of a single nonlinear interaction term. The controller design methodol-
ogy presented in Section 3.4 is developed for a scalar nonlinearity; however, the
method can also be extended to cope with multiple nonlinearities (see [19]).

Next, we write the reduced-order drill-string system (3.9) in perturbation
states ξr with respect to the equilibrium, defined as ξr := xr − xr,eq. Further-
more, we apply a linear loop transformation to change the properties of the
nonlinearity ϕ in order to satisfy certain conditions related to the controller de-
sign in Section 3.4. This results in the state-space representation of the dynamics
in perturbation coordinates given by:

ξ̇r = Ar,tξr +Brũ+Grṽr
q̃r = Hrξr
ỹr = Crξr
ṽr ∈ −ϕ̃r (q̃r) ,

(3.11)

where we define Ar,t := Ar + δGrHr with δ > 0 a constant to apply the linear
loop transformation. Moreover, q̃r := qr−Hrxr,eq, ỹr := yr−Crxr,eq, ϕ̃r (q̃r) :=
ϕ (q̃r +Hrxr,eq) − ϕ (Hrxr,eq) + δq̃r and ṽr = vr − vr,eq − δq̃r. Note that the
first controller objective in Section 3.3.1 (stabilization) can now be formulated
as the desire to stabilize the origin of (3.11) by the design of output-feedback
controllers inducing the control input ũ. The latter is the topic of Section 3.4.

3.4 Design of observer-based output-feedback
controllers

The control design strategy proposed here builds upon an observer-based con-
troller for Lur’e-type systems with discontinuities as in [19,26]. In these previous
works, the controller and observer were designed for a drill-string model with a
single flexibility mode and with the assumption on the availability of down-hole
measurements, while in the current work we adopt more realistic multi-modal
drill-string models (see Section 3.2) and develop controllers based on surface
measurements only. Moreover, the conditions for controller synthesis as in [19]
achieving global asymptotic stability are infeasible for the realistic drill-string
model presented here for three reasons: firstly, the incorporation of multiple tor-
sional flexibility modes of the drill-string, see Figures 3.2, 3.4 and 3.3, secondly,
the incorporation of a bit-rock interaction model based on field data, which shows
a rather severe velocity-weakening effect, see Figure 3.1, and, thirdly, the restric-
tion on the availability of only surface measurements. Therefore, we employ a
controller synthesis strategy to design locally stabilizing controllers and we show
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that such local stability properties suffice to mitigate stick-slip oscillations in
realistic drilling scenarios. In Section 3.4.1, we propose the state-feedback con-
troller, in Section 3.4.2, the observer design and in Section 3.4.3, the resulting
output-feedback control strategy, all including stability guarantees.

3.4.1 State-feedback controller design

In this section, we discuss the design of a state-feedback controller that stabilizes
the origin ξr = 0 of the system (3.11). Stabilization of the origin of (3.11)
corresponds to the desired operation of constant angular velocity of the drilling
system, as discussed in Section 3.3.2. The control input is given by ũ ∈ R, the
input and output of the set-valued nonlinearity ϕ̃r are given by q̃r ∈ R and
ṽr ∈ R, respectively, and the system matrices are Ar,t ∈ Rmr×mr , Br ∈ Rmr×1,
Gr ∈ Rmr×1 and Hr ∈ R1×mr . We introduce a linear static state-feedback law,
where we take the “measurement” (or observer) error e := ξr − ξ̂r into account
as follows:

ũ = Kξ̂r = K (ξr − e) . (3.12)

Herein, K ∈ R1×mr is the control gain matrix and ξ̂r the observer estimate of
the state ξr; the observer will be treated in detail in Section 3.4.2. The resulting
closed-loop system is described by the following differential inclusion:

ξ̇r = (Ar,t +BrK) ξr +Grṽr −BrKe
q̃r = Hrξr
ṽr ∈ −ϕ̃r (q̃r) .

(3.13)

The transfer function Gcl(s) from the input ṽr to the output q̃r of system (3.13)

is given by Gcl = Hr(sI − (Ar,t +BrK))
−1
Gr, s ∈ C. Now, let us state the

following assumptions on the properties of the set-valued nonlinearity ϕ̃r(q̃r).
Hereto, we first define a set Sa for which a particular sector condition is satisfied:
Sa := {q̃r ∈ R|q̃r,a1 < q̃r < q̃r,a2} with q̃r,a1 < 0 < q̃r,a2.

Assumption 3.1. The set-valued nonlinearity ϕ̃r : R→ R satisfies the following
conditions:

• 0 ∈ ϕ̃r(0);

• ϕ̃r is continuously differentiable and bounded for all q̃r ∈ Sa;

• ϕ̃ locally satisfies the [0, k] sector condition, with k > 0, in the sense that

ṽr [ṽr + kq̃r] ≤ 0 ∀ ṽr ∈ −ϕ̃r(q̃r),with q̃r ∈ Sa. (3.14)

Remark 3.2. The case where ϕ̃r is non-smooth or even discontinuous on the
domain Sa can also be treated using the approach presented in [19]. However,
this is not necessary for the application presented in this chapter, since we pursue
the design of controllers locally stabilizing a non-zero rotational velocity of the
drill-string system.
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Figure 3.5: Schematic representation of system (3.13) after transforma-
tion using a dynamic multiplier.

The intended control goal is to render the closed-loop system (3.13) locally
input-to-state stable (LISS) with respect to the input e, as formalized in Defi-
nition 3.1, by a proper design of the controller gain K. We use the concept of
a dynamic multiplier to transform the original system into a feedback intercon-
nection of two passive systems. In Figure 3.5, a block diagram of the system
including the dynamic multiplier with transfer function M(s) = 1 + γs, s ∈ C,
is shown. Furthermore the loop transformation gain 1

k is included given the fact
that the nonlinearity ϕ̃r(·) belongs to the sector [0, k]. The linear system Σ1 in
Figure 3.5 can be written in state-space form as follows:

Σ1 :

{
ξ̇r = (Ar,t +BrK) ξr +Grṽr −BrKe
q̆r = H̆rξr + D̆rṽr + Z̆re

(3.15)

with H̆r := Hr + γHr (Ar,t +BrK), D̆r := 1
k + γHrGr and Z̆r := −γHrBrK.

For system Σ2 in Figure 3.5 we can write:

Σ2 :

{
˙̃qr = − 1

γ q̃r + 1
γ q̆r − 1

γk ṽr
ṽr ∈ −ϕ̃r(q̃r).

(3.16)

The following theorem states sufficient conditions under which system (3.13)
is LISS with respect to input e.

Theorem 3.1. Consider system (3.13) and suppose that there exists a constant

γ > 0 such that
(
Ar,t +BrK,Gr, H̆r, D̆r

)
is strictly passive. Then, system

(3.13) is LISS, with respect to input e for any ϕ̃r(·) satisfying Assumption 3.1.

Proof. The proof of Theorem 3.1 is given in Appendix B.1.
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3.4.2 Observer design

Next, an observer will be designed to construct an estimate of the states of system
(3.11). Such a state estimate is needed since we only rely on surface measure-
ments while, at the same time, aiming to employ the state-feedback controller
of Section 3.4.1. The proposed observer design builds upon the result in [26]. In
fact the observer itself is the same as the observer in [26]; however, due to the
multi-modal dynamics, severe velocity-weakening in the bit-rock interaction and
availability of surface measurements only, the global stability conditions for the
equilibrium of the observer error dynamics are unfeasible. Therefore, we propose
novel results providing feasible conditions for the local stability of the observer
error dynamics, which is sufficient to mitigate stick-slip oscillations in realistic
drilling scenarios. Therefore, we propose the following observer:

˙̂
ξr = (Ar,t − LCr) ξ̂r +Brũ+Grv̂r + Lỹr
q̂r = (Hr −NCr) ξ̂r +Nỹr
ŷr = Cr ξ̂r
v̂r ∈ −ϕ̃r (q̂r) ,

(3.17)

with measured output ỹr = Crξr (ỹr ∈ Rkr and Cr ∈ Rmr×kr ) and observer
gain matrices L ∈ Rmr×kr and N ∈ R1×kr . Next, we state an additional
assumption on the nonlinearity ϕ̃r(·). Hereto, we first define the set Sb as
Sb := {q̃r ∈ R|q̃r,b1 < q̃r < q̃r,b2} with q̃r,b1 < 0 < q̃r,b2, such that for all q̃r ∈ Sb
the following monotonicity property holds.

Assumption 3.2. The set-valued nonlinearity ϕ̃r : R → R is such that ϕ̃r is
monotone for all q̃r ∈ Sb, i.e. for all q1 ∈ Sb and q2 ∈ Sb with v1 ∈ ϕ̃r(q1) and
v2 ∈ ϕ̃r(q2), it holds that (v1 − v2)(q1 − q2) ≥ 0.

The observer error dynamics (with the observer error defined as e = ξr − ξ̂r)
can be written as

ė = (Ar,t − LCr) e+Gr (ṽr − v̂r)
ṽr ∈ −ϕ̃r(Hrξr)

v̂r ∈ −ϕ̃r
(
Hr ξ̂r +N

(
ỹr − Cr ξ̂r

))
.

(3.18)

The following theorem provides sufficient conditions for the design of the observer
gains L and N such that the origin e = 0 is a locally exponentially stable
equilibrium point of the observer error dynamics (3.18).

Theorem 3.2. Consider system (3.11) and the observer (3.17) with (Ar,t − LCr,
Gr, Hr −NCr, 0) strictly passive and the matrix Gr being of full column rank.
If it holds that

‖ξr(t)‖ ≤ ε
q̃r,b,min
‖Hr‖

, ∀t ≥ 0,
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for some ε ∈ (0, 1) and q̃r,b,min := min (|q̃r,b1| , |q̃r,b2|), then e = 0 is a locally ex-
ponentially stable equilibrium point of the observer error dynamics (3.18) for any
ϕ̃r satisfying Assumptions 3.1 and 3.2 with the region of attraction containing
the set {

e ∈ Rmr
∣∣∣∣∣‖e0‖ ≤ (1− ε) q̃r,b,min

‖Hr −NCr‖

(
λmax(Po)

λmin(Po)

)− 1
2

}

with the initial observer error e(0) = e0. The matrix Po results from the existence
of Po = P>o > 0 and Qo = Q>o > 0 such that Po (Ar,t − LCr)+(Ar,t − LCr)Po =

−Qo and Gr
>Po = Hr − NCr, which is equivalent to the strict passivity of

(Ar,t − LCr, Gr, Hr −NCr, 0).

Proof. The proof of Theorem 3.2 is given in Appendix B.2.

3.4.3 Output-feedback control design

The state-feedback controller and the observer from the previous sections to-
gether form an observer-based output-feedback controller. We use the estimated
state ξ̂r of the observer (3.17) in the feedback law (3.12) of system (3.13) and
prove local asymptotic stability of the equilibrium (ξr, e) = (0, 0) of the inter-
connected system (3.13), (3.18).

Theorem 3.3. Consider system (3.13) and observer (3.17). Suppose the condi-
tions in Theorem 3.1 are satisfied for system (3.13) and that the observer error
dynamics in (3.18) satisfies the conditions in Theorem 3.2. Then, (ξr, e) = (0, 0)
is a locally asymptotically stable equilibrium point of the interconnected system
(3.13), (3.18) for any ϕ̃ satisfying Assumptions 3.1 and 3.2.

Proof. The proof of Theorem 3.3 is given in Appendix B.3.

3.5 A simulation case study

In this section, we will show the application of the observer-based output-
feedback controller (see Section 3.4) to the reduced-order drill-string model pre-
sented in Section 3.2. To stabilize the desired equilibrium xr,eq of system (3.9)
we have to design the controller gain K and the observer gains L and N to apply
the control torque

ut = uc +Kξ̂r, (3.19)

with uc the constant feedforward torque as determined in Section 3.3.2 and Kξ̂r
the feedback torque based on the observer estimate ξ̂r.

For the design of the controller and observer gains, we consider the system
in perturbation states (3.11). Therefore we also have have to apply the linear
loop transformation to change the properties of the set-valued nonlinearity such
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Figure 3.6: Transformed bit-rock interaction model ϕ̃r(q̃r).

that it satisfies the conditions in Assumptions 3.1 and 3.2. Recall the trans-
formed nonlinearity ϕ̃r (q̃r) = ϕ (q̃r +Hrxr,eq)− ϕ (Hrxr,eq) + δq̃r. By choosing
δ > 0 appropriately, ϕ̃r can be made locally monotonically increasing to sat-
isfy Assumption 3.2. In addition and in combination with the fact that the
system is written in perturbation states, the transformed nonlinearity also lo-
cally satisfies the sector condition as defined in Assumption 3.1. To illustrate
both aspects, the transformed nonlinearity ϕ̃r (q̃r), with δ = 29.2 Nms/rad, is
shown in Figure 3.6. As can be seen in this figure, ϕ̃r (q̃r) belongs locally to
the sector [0, k] with k = 570 Nms/rad. The physical meaning of this condition
is that the amount of velocity-weakening in the bit-rock interaction is limited
for bit-rock interaction laws satisfying this sector condition. Moreover, the size
of the sector indicates the amount of uncertainty in the bit-rock interaction for
which the desired setpoint can be robustly stabilized. A larger sector, including
the total nonlinearity ϕ̃r (q̃r), results in an increased robustness with respect
to uncertainty in the bit-rock interaction. However, it would also result in high
control gains K. Such high gains result in high control torques ũ that can not be
realized by the top drive and are therefore infeasible in practice. In Figure 3.6,
we have also indicated the point q̃r,a1 = −28.9 rpm for which it holds that for
q̃r,a1 < q̃r < q̃r,a2 the sector condition is satisfied (q̃r,a2 can be chosen arbitrarily
large in this case) and hence Assumption 3.1 is satisfied. Moreover, the point
q̃r,b1 = −20.1 rpm such that for q̃r,b1 < q̃r < q̃r,b2 it holds that ϕ̃r is monotoni-
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cally increasing (q̃r,b2 can also be chosen arbitrarily large in this case) and hence
Assumption 3.2 is satisfied.

The controller and observer gains are designed according to the conditions
given in Theorem 3.1 and Theorem 3.2, respectively. The results are obtained by
using SeDuMi 1.3 [111], a linear matrix inequality (LMI) solver and the YALMIP
interface [71]. The designed controller and observer gains are given by

K =
[
−276.9 201.7 −228.1 −481.4 370.6 192.1 549.1 272.7 68.79

]
,

L =




40.14
64.19
87.96
−187.3
−239.9
183.5
428.0
347.5
−6.515




, N =
[
0.502

]
.

In this case study, we introduce a so-called startup scenario, which is based
on practical startup procedures for drilling rigs. Herein, the drill-string is first
accelerated to a low constant rotational velocity with the bit above the formation
(off bottom) and, subsequently, the angular velocity and weight-on-bit (WOB)
are gradually increased to the desired operating conditions. The startup scenario
is built up as follows:

1. Start with zero WOB, which on a model level is reflected by the absence
of a velocity-weakening effect in the bit-rock interaction model. Moreover,
an industrial PI-controller, see (3.22) for details, is used to operate at
relatively low velocity and build up torque in the drill-string to overcome
static torques due to drag in the time window 0 < t < 50 s;

2. The controller (3.19) is activated at t = 50 s and the reference angular
velocity is slowly increased until the desired operating velocity (ωeq) is
reached (in the time window 50 ≤ t < 110 s). At the same time, we
emulate that the WOB slowly increases (by adaptation of the bit-rock
interaction model as in (3.20), (3.21)) to engage the drilling process in
order to generate the nominal operating condition in both the angular
velocity and the WOB (and hence bit torque).

The change in the WOB is modelled as a change in the torque-on-bit Tbit. In
particular, the bit-rock interaction model in (3.7) is scaled using a scaling factor
α(t) according to

Tbit(t) = Sign(ωbit)
(
Tini + α(t)

(
Td − Tini + (Ts − Td) e−

30
Ndπ
|ωbit|

))
, (3.20)
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where

α(t) =





0, t0 ≤ t ≤ t1
t−t1
t2−t1 , t1 < t < t2
1, t ≥ t2

(3.21)

with t1 = 50 and t2 = 110 in this case and Tini is the amount of resisting torque
that is still present at the bit-rock interface, even when the bit is off bottom
(e.g. due to drilling mud and interactions with the bore hole).

Before we show the simulation results of the designed output-feedback con-
troller, we will show a simulation result of the reduced-order drill-string system
in closed loop with an existing industrial controller (based on [51]). The result
of the simulation of the reduced-order model in closed loop with the industrial
(SoftTorque) controller is shown in Figure 3.7. The simulations have been ob-
tained numerically using the time-stepping method [66, 78]. When possible a
Moreau time-stepping method, applicable to second-order dynamics, is used.
However the observer is based on a reduced-order model which is not necessarily
in second-order form. For the system in first-order state-space form the time-
stepping scheme is adapted; the dedicated solver for first-order systems employed
in this thesis is given in Appendix C.

The controller used for the simulation in Figure 3.7 is a properly tuned
active damping system (i.e. PI-control of the angular velocity) which aims at
damping the first torsional mode of the drill-string dynamics, based on the error
ey between the measured top drive velocity y = ωtd and the reference angular
velocity ωtd,ref , i.e. ey := ωtd,ref − ωtd. The controller is given in the Laplace
domain by

ũ(s) =

(
ct +

kt
s

)
ey(s) (3.22)

with ct = 1829 and kt = 1177 such that damping of the first torsional flexibility
mode is obtained. The second plot shows the top drive velocity (ωtd) along with
the reference velocity ωtd,ref that starts at a velocity of 20 rpm and is gradually
increased to the desired equilibrium velocity, ωeq, of 50 rpm. From the bit
response, in the upper plot, we can clearly recognize stick-slip oscillations. The
increasing amplitude of the oscillations in the top drive velocity demonstrates
that these vibrations arise when the WOB is increased (50 ≤ t < 110 s). More
specifically, when the bit is off bottom (in the first 50 seconds) and there is
no velocity-weakening effect in the bit-rock interaction, the controller stabilizes
the desired velocity, even though the bit initially sticks a couple of times due
to transient oscillations. However, when the WOB is increased, modelled as an
increase in Ts and Td and therewith increasing the amount of velocity-weakening,
the controller is no longer able to stabilize the desired equilibrium and eventually
stick-slip oscillations appear. In the bottom plot, the applied torque at the top
drive is also shown; the controller clearly acts on the oscillations in the top drive
velocity, however the control action does not stabilize the desired velocity.
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Figure 3.7: Simulation result of the reduced-order model with an existing
industrial (SoftTorque) controller in the startup scenario.
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For the designed output-feedback controller, we immediately activate (at

t = 0) the observer to obtain the state estimate ξ̂r; however, this estimate is not
used by the industrial PI-controller in the first 50 seconds (since this controller
only uses the top drive velocity as a measured output). When the state-feedback

controller is switched on at t = 50, it uses the state estimate ξ̂r, based on the
surface measurement ωtd only. Figure 3.8 shows a simulation result of the closed-
loop system with output-feedback controller, where we used the same initial
conditions ξr,0 and startup scenario as for the previous simulation (Figure 3.7).

Furthermore, the initial states for the observer ξ̂r,0 have a 10% offset from the
initial states ξr,0. It can be seen that after some transient behavior, the observer
estimates converge to the actual states within approximately 5 seconds. For
the sake of clarity, the scale of the plot is adapted such that the initial peaks
of the observer estimate of the bit angular velocity are not totally visible. The
amplitude of these oscillations peaks up to 300 rpm due to the initial observer
error but this does not affect the control action because the PI-controller does
not use the observer estimates. After 50 seconds the output-feedback controller
is turned on and the WOB and desired velocity are increased. The simulation
results show that the top drive and bit velocity converge to their equilibrium
value and stick-slip oscillations are avoided. The equilibrium velocity of the bit
ωbit,eq := Hrxr,eq ≈ 47 rpm is slightly lower than the equilibrium velocity of the
top drive ωtd,eq = ωeq = 50 rpm. This small mismatch is a consequence of the
model reduction, as the outputs qr and yr of the reduced-order system slightly
differ from the original outputs q and y and the feedforward is designed such
that in equilibrium the top drive velocity of the reduced-order model matches
the desired velocity. The lag between the desired velocity and the top drive
velocity between 50 and 115 s in Figure 3.8 can be explained as follows. We
have designed a low-gain controller to accommodate the practical limitations
of the top drive actuator aiming at the stabilization of the desired equilibrium
(not at achieving a high bandwidth). If desired, this could be compensated by
designing additional (mass) feedforward.

Most importantly, it can be concluded that the stick-slip vibrations are elim-
inated with the designed controller. Besides (local) asymptotic stability of the
desired setpoint, the controller is designed to obtain robustness with respect to
uncertainty in the bit-rock interaction. As mentioned in Section 3.2.1, the bit-
mobility can be used to investigate the sensitivity for disturbances in the bit-rock
interaction. Therefore, we would like to analyze if indeed damping of the res-
onance modes in the bit-mobility is obtained with the designed observer-based
controller. To do so, we use a linearized approximation of the reduced-order
nonlinear closed-loop system to determine the closed-loop bit-mobility. The
approximated closed-loop system in perturbation coordinates, and linearized
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Figure 3.8: Simulation result of the reduced-order model with the de-
signed output-feedback controller in the startup scenario.
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Figure 3.9: Closed-loop bit-mobility of the reduced-order model, i.e. the
frequency response function from bit torque Tbit to bit velocity
ωbit for the linearized system (3.23).

around (ξr, ξ̂r) = (0, 0) is given by

ξ̇r =

(
Ar −GrHr

∂ϕ
∂qr

∣∣∣
ξr=0,ξ̂r=0

)
ξr +BrKξ̂r

˙̂
ξr =

(
Ar − LCr +BrK −Gr (Hr −NCr) ∂ϕ

∂q̂r

∣∣∣
ξr=0,ξ̂r=0

)
ξ̂r

+

(
LCr −GrNCr ∂ϕ

∂q̂r

∣∣∣
ξr=0,ξ̂r=0

)
ξr.

(3.23)

Based on this linearized closed-loop system, we can determine the closed-loop
bit-mobility as shown in Figure 3.9. For reference we have also shown closed-loop
bit-mobility of the system with the industrial controller (ST). It can be observed
that with the industrial controller only the first torsional flexibility mode is
damped, which can be an explanation for the fact that the drill-string system still
exhibits stick-slip oscillations when controlled by the SoftTorque controller. The
designed observer-based controller, on the other hand, clearly achieves damping
of all three flexibility modes of the reduced-order model. Clearly, damping of
multiple flexibility modes can be achieved with the proposed controller design
methodology.

3.6 Controller design for the 18-DOF model

In the previous sections, the controller design strategy is applied to a reduced-
order model of the drill-string dynamics. Stability conditions to guarantee (local)
asymptotic stability are derived and simulation results to illustrate that the
desired velocity can indeed be stabilized are shown. The purpose of the reduced-
order model is to reduce the controller complexity, such that the LMI-based
design of the state-feedback controller and observer are feasible. Additionally,
a controller of limited order is favorable for implementation reasons. However,
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Figure 3.10: Block diagram of 1) the controller implementation for the
18-DOF drill-string model, and 2) the design steps for the
controller.

in practice the plant (i.e. the drilling system) is of course not of reduced order.
Therefore, the application of the controller design strategy to the 18-DOF drilling
system dynamics (3.8) is investigated in this section.

The implementation of the controller and the design steps taken to obtain
the controller are illustrated in the block diagram in Figure 3.10. The upper loop
in the block scheme is the part that is running online, while the dashed blocks
indicate the design steps that are performed offline before applying the controller
to the drilling system. The controller design strategy can be summarized by
the following steps. First, a reduced-order model, that captures the dominant
dynamics to estimate the input-output behavior, is determined based on a (full-
scale finite-element) model of the drill-string. This model can be obtained from
the drill-string plan in practice. Next, a controller and observer are synthesized
for the reduced-order model, according to the procedure presented in Section 3.4.
Finally, this controller-observer combination is applied to the drilling system as
visualized by the upper loop in Figure 3.10.

The closed-loop system, consisting of the finite-element model of the drill-
string dynamics and the observer-based output-feedback controller based on the
reduced-order model, is given by the drill-string dynamics (3.8):

ẋ = Ax+But +Gv +G2v2

q = Hx
q2 = H2x
y = Cx
v ∈ −ϕ(q)
v2 ∈ −φ(q2),

(3.24)
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the observer, based on the reduced-order model:

˙̂xr = Arx̂r +Brut +Grv̂r +G2,rv̂2,r + L (y − ŷr)
q̂r = Hrx̂r +N (y − ŷr)
q̂2,r = H2,rx̂r
ŷr = Crx̂r
v̂r ∈ −ϕ(q̂r)
v̂2,r ∈ −φ(q̂2,r)

(3.25)

and the state-feedback controller ũ = Kξ̂r = K (x̂r − xr,eq).

Remark 3.3. The stability conditions, as presented in Section 3.4, only hold
for a closed-loop system where the controller and observer are designed for the
plant model and also are applied to the same plant. For the application of the
reduced-order controller and observer to a higher-order model (or real drilling
system) stability is not necessarily guaranteed due to model mismatches. How-
ever, analysis of the closed-loop system and simulation results presented next
show that the reduced-order controller and observer can still (locally) stabilize
the desired equilibrium of the high-order finite-element model.

As mentioned before, only the top drive angular velocity measurement is used
and the measured output is given by y = Cx = ωtd. The designed controller
and observer gains for the closed-loop system (3.24)-(3.25), with the top drive
angular velocity measurement is the measured output (i.e. y = Cx = ωtd), are
given by

K =
[
−276.9 201.7 −228.1 −481.4 370.6 192.1 549.1 272.7 68.79

]
,

L =




44.26
41.77
27.17
−72.56
−105.6
84.30
171.6
61.88
43.36




, N =
[
0.414

]
.

(3.26)

The controller gains are equal to the controller gains designed for the reduced-
order model in Section 3.5, however the observer gains are slightly different. The
observer has been re-tuned (by changing the sector bounds for the observer) to
obtain more robustness with respect to the model mismatch due to reduction.

A simulation result of the designed controller applied to the 18-DOF drill-
string model is shown in Figure 3.11. For comparison, also the response of the
system in closed-loop with the industrial controller (indicated by the subscript
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ST ) is shown. In the first 50 seconds, in both strategies the same controller is
used (as explained for the startup scenario), after 50 seconds the observer-based
controller is switched on while for the industrial controller the same controller
is used for the whole time range. Between 50 and 110 seconds the torque-on-
bit and desired velocity are again changed according to the startup scenario
explained earlier to obtain the desired operating conditions. This simulation
shows that the observer-based output-feedback controller clearly stabilizes the
desired setpoint of 50 rpm, while the industrial controller does not stabilize the
equilibrium, resulting in stick-slip oscillations at the bit. It is also important to
mention that the control action (Ttd) is limited as can be seen in the top drive
torque in the bottom plot. Figure 3.11 shows that the stick-slip limit cycles
consist of two successive slip phases relatively short after each other followed by
a longer sticking period before the cycle is repeated, while in the response of
the reduced-order model the stick-slip oscillations are characterized by a single
peak. The response with the two peaks followed by a longer sticking period
is recognized from field observations for this rig. Apparently, this behavior is
not captured in the reduced-order model from Section 3.2.1. However, the main
purpose of the reduced-order model is to capture the dominant dynamics in order
to design controllers to mitigate stick-slip vibrations. Closed-loop simulations,
using a controller and observer based on the reduced-order model, show that the
model can be very well used for this purpose.

To conclude, the simulation result in Figure 3.11 shows that the controller
is robust for the model mismatch introduced by the reduction procedure. In
addition, this simulation result gives an indication that the controller can deal
with unmodelled drill-string dynamics, since the controller only uses the reduced-
order dynamics in which a part of the original dynamics is omitted. Both these
aspects are important properties for practical implementation of the proposed
controller design strategy. In Section 3.7, several other robustness aspects are
investigated by means of simulation studies. In the next section, a stability
analysis based on linearization is performed.

3.6.1 Stability analysis

For a controller to work properly in practice, i.e. mitigate stick-slip vibrations
and stabilize the desired angular velocity, three main aspects should be satisfied.
First, the desired setpoint should be a (locally) asymptotically stable equilibrium
point of the closed-loop system. Second, the control action required to stabilize
the equilibrium should satisfy actuator limitations and third, the closed-loop
system has to be robust with respect to uncertainties (e.g. in the bit-rock in-
teraction and the drill-string model) and disturbances (e.g. sensor and actuator
noise). The first point is a necessary condition, while the latter two aspects are
performance requirements from a practical point of view.

To investigate the stability of the equilibrium point of the closed-loop non-
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Figure 3.11: Simulation result of both the industrial (SoftTorque) con-
troller and the designed observer-based output-feedback con-
troller applied to the 18-DOF drill-string system.

linear system we linearize the closed-loop system around this equilibrium point
and determine the eigenvalues of the linearized system. The linearized closed-
loop system, in perturbation coordinates, and linearized around (ξ, ξ̂r) = (0, 0)
is given by

ξ̇ =

(
A−GH ∂ϕ

∂q

∣∣∣
ξ=0,ξ̂r=0

)
ξ +BKξ̂r

˙̂
ξr =

(
Ar − LCr +BrK −Gr (Hr −NCr) ∂ϕ

∂q̂r

∣∣∣
ξ=0,ξ̂r=0

)
ξ̂r

+

(
LC −GrNC ∂ϕ

∂q̂r

∣∣∣
ξ=0,ξ̂r=0

)
ξ.

(3.27)

As can be seen from this equation, both the nonlinearity in the plant and the
nonlinearity in the observer are linearized. The desired equilibrium of the closed-
loop system is (locally) exponentially stable if the eigenvalues λi of the system
are in the open left-half-plane (LHP) of the complex plane. For a desired velocity
of 50 rpm the real value of the right-most pole equals max(Re(λi)) = −0.015,
hence the desired setpoint is locally (exponentially) stable, which is in accor-
dance to the simulation results shown in Figure 3.11. However, the equilibrium
of the closed-loop with the industrial controller used for the simulation in the
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same figure is also stable (max(Re(λi)) = −0.022). As we have observed in
the simulation, the controller failed to stabilize the desired velocity. This is be-
cause the controller also needs to be robust with respect to disturbances, model
mismatches, (measurement) noise etc. to work properly in practice, while the
linearization only indicates local stability of the desired equilibrium. Some of
these robustness aspects, such as changing operating conditions and measure-
ment noise are investigated in the next section. Moreover, investigation of the
closed-loop system has revealed that robustness with respect to the bit-rock in-
teraction is particularly important for the stability of the desired setpoint of the
nonlinear closed-loop system and is therefore further analyzed here.

As mentioned before, the velocity-weakening effect in the bit-rock interaction
has a destabilizing effect on the drill-string dynamics. Therefore, a controller
should be designed such that the robustness with respect to this negative damp-
ing effect is “optimized”. An indication of such robustness property is given
by the closed-loop bit-mobility transfer function. That is, damping of the reso-
nance modes in the bit-mobility results in a decreased sensitivity with respect to
variations in the bit-rock interaction. The open-loop bit-mobility function of the
drill-string system is defined by Gcl and shown in Figure 3.4. Using the linearized
system (3.27) we can also investigate the closed-loop bit-mobility function. In
Figure 3.12, the magnitude of the closed-loop bit-mobility of the system with
the observer-based controller and the industrial controller (ST) are shown and
compared with the open-loop bit-mobility as previous shown. The objective of
the industrial controller is to damp the first resonance mode, which is also visi-
ble in the bit-mobility plot. However, higher flexibility modes are still present,
which can be related to the fact that these undamped higher flexibility modes
still cause stick-slip oscillations when the SoftTorque controller is applied. The
proposed controller design strategy clearly achieves damping of multiple flexi-
bility modes. From Figure 3.12, it can be seen that the first three modes are
well-damped by the observer-based output-feedback controller, where these first
three modes are the dominant flexibility modes as put forward by the open-loop
bit-mobility. This confirms that, with the proposed controller design strategy,
it is indeed possible to damp multiple flexibility modes.

3.7 Robustness of the closed-loop system

In the previous section, a simulation case-study is shown of the closed-loop sys-
tem consisting of the finite-element model for the drill-string and the observer-
based output-feedback controller based on the reduced-order model. This sim-
ulation has been performed under “ideal” conditions, i.e. without disturbances
and/or changing operating conditions in terms of desired angular velocity, in-
creasing length of the drill-string and changing bit-rock interaction. In this sec-
tion, simulation results are presented where these effects are taken into account.
In Section 3.7.1, the minimal angular velocity that can be stabilized is investi-
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Figure 3.12: Closed-loop bit-mobility, i.e. the frequency response function
from bit torque Tbit to bit velocity ωbit for the linearized
system (3.27).

gated to analyze the improved operating envelope in terms of angular velocity
of the observer-based output-feedback controller. In Section 3.7.2, a simulation
study with a changed bit-rock interaction model is performed. In Section 3.7.3,
sensor and actuator noise disturbances are taken into account and, finally, in
Section 3.7.4, robustness with respect to changing length of the drill-string is
investigated. All these results are obtained for a closed-loop system with the
18-DOF FEM model and the reduced-order controller with the gains given in
(3.26).

3.7.1 Different operating velocity

The designed controller (Section 3.6) is synthesized for a desired angular ve-
locity of 50 rpm. This controller is designed such that, on the one hand, the
robustness with respect to the bit-rock interaction is improved and, on the other
hand, the control action is limited, i.e. feasible for a typical top drive. This bal-
ance is achieved by tuning the sector bound k and the slope of the transformed
nonlinearity ϕ̃r around the desired setpoint (determined by δ). The resulting
bounds q̃r,a1 and q̃r,b1, for which the nonlinearity satisfies Assumptions 3.1 and
3.2, give an indication of the lower limits for the bit angular velocity for which
stability can still be guaranteed; however, these bounds are typically conserva-
tive and hold for the reduced-order closed-loop system. These values indicate
the region of attraction in terms of the bit angular velocity. However, from a
practical point of view it is interesting to investigate the variation of the setpoint
for which the drill-string system can be stabilized. For the nonlinear closed-loop
system the (local) stability of different setpoints is investigated by linearization
of the equilibrium (see Section 3.6.1). Due to the velocity-weakening effect in
the bit-rock interaction, which has a destabilizing effect, lower angular veloc-
ities are more difficult to stabilize. That is, if the velocity is decreased, then
the amount of negative damping increases and at a certain moment the con-
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troller is not able to stabilize the desired velocity, indicated by a transition of
the right-most eigenvalue from the left-half-plane (LHP) to the right-half-plane
(RHP). This lower limit on the desired angular velocity for different controllers
is indicated in Figure 3.13. For the industrial (SoftTorque) controller the lower
limit is approximately 40 rpm, while the lower limit for the designed controller
is slightly above 30 rpm. Once more, it has to be mentioned that these velocities
indicate a theoretical lower limit and the lowest velocity for which stick-slip os-
cillations can be avoided will be higher. For example, we mention that with the
SoftTorque controller in simulations stick-slip oscillations already appeared for
a desired angular velocity of 50 rpm. For the startup scenario these velocities
are also higher due the changing conditions and transient oscillations caused
by a difference between the initial conditions and the equilibrium. To give an
indication, the minimum velocity that can be stabilized in simulations using
the startup procedure is approximately 41.5 rpm (and 51 rpm for the industrial
controller).

In Figure 3.13, also a third controller is indicated (ωmin,lowrpm). This con-
troller is designed without keeping in mind robustness and/or actuator limita-
tions. For the 18-DOF model, a controller (based on the reduced-order model)
can be designed that focuses on a large operating envelope in terms of angular
velocity. This controller is obtained by decreasing the size k of the sector, result-
ing in less robustness with respect to the bit-rock interaction. As can be seen,
the resulting lower bound for the angular velocity can not be decreased that
much in this case. However, it shows that different controllers can be designed
depending on the performance specifications for the drilling system.

3.7.2 Changing bit-rock interaction model

In practice, it is difficult to obtain an accurate model for the bit-rock interaction
and additionally this bit-rock interaction is prone to changes during the drilling
process due to changing formation characteristics and bit wear. Robustness with
respect to uncertainty in the bit-rock interaction is key in practice and is ob-
tained by enlarging the sector k for the bit-rock interaction in the controller
synthesis. This means that the controller is robust as long as the nonlinearity
(locally) satisfies the sector condition and satisfies the conditions stated in As-
sumptions 3.1 and 3.2. In this section, a simulation result is shown to illustrate
the variations in the bit-rock interaction that the proposed controller can cope
with.

Recall the nominal parameter values for the bit-rock interaction model, that
is Ts = 7700 Nm, Td = 1700 Nm and Nd = 5 rpm. These values are used in the
controller synthesis and are also used in the observer. So, during the simulation
the observer always uses the nominal bit-rock interaction model, since this is the
only model that is available in practice. Due to changing conditions the actual
bit-rock interaction, acting on the plant, changes. In this simulation study both
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Figure 3.13: Lower limit of the desired angular velocity that can be sta-
bilized for different controllers.

the torque level and the decrease rate of the bit-rock interaction is changed.
First, the nominal level of the bit-rock interaction model is increased. In other
words, both the static torque Ts and the dynamic torque Td are increased. Also
the decrease rate (related to Nd) is adapted, by increasing Nd. This leads to
a less severe velocity-weakening effect and therefore more negative damping at
higher velocities. The parameters for the adapted bit-rock interaction model are
given by T cs = Ts + 500, T cd = Td + 500 and N c

d = Nd + 1. The nominal and
adapted bit-rock interaction model are shown in the left plot in Figure 3.14. The
plot on the right-hand side shows the equivalent transformed representation of
both bit-rock interaction models. It can be seen that both bit-rock interaction
models (locally) satisfy the [0, k] sector condition. It has to be mentioned that
the increase of the torque level is compensated by the feedforward torque, i.e.
the plant uses a higher (constant) feedforward torque than the observer. This is
a reasonable assumption from a practical point of view, because the amount of
torque necessary to rotate the drill-string can be determined from measurements.
Another possibility would be to compensate for this effect using integral action in
the controller; however, this is not incorporated in the current controller design
strategy.

The simulation result with the changed bit-rock interaction model is shown
in Figure 3.15. It takes about 25 seconds before the states of the observer have
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Figure 3.14: Nominal and adapted bit-rock interaction model, and a zoom
plot of its equivalent transformed representations to indicate
the sector bounds.

converged to the actual states. When the observer-based controller is switched
on after 50 seconds the desired setpoint is stabilized and stick-slip oscillations
have been mitigated. Again, a small mismatch between the actual bit-velocity
and the reduced-order estimate can be recognized, which is caused by the re-
duction error. Moreover, the difference between the torque for the plant and the
observer can be observed clearly in the bottom plot. As mentioned before, this
difference is the (constant) difference between the actual feedforward torque and
the observer feedforward torque which is based on the nominal bit-rock interac-
tion. The necessary top drive torque as shown in the bottom plot shows only
small oscillations and also the level of the required torque is feasible for typical
top drives in practice. Due to the switch of the controllers at t = 50 seconds a
step in the required torque is present, but as can be seen also this only requires
a relatively small change of the top drive torque.

Further studies have shown that we can increase the value of Nd, which
determines the decrease rate of the bit-rock interaction model, to 6.17 rpm for
the particular start scenario presented here. This increased value of Nd results
in a more negative slope in the bit-rock interaction, i.e. more negative damping,
around the desired operating velocity. Again, it has to be mentioned that the
controller and observer are designed based on the original bit-rock interaction
parameters. A controller specifically designed for a system with higher values for
Nd would be able to deal with bit-rock interaction models with those parameter
settings. In addition, the settings of the startup scenario are also of influence
whether or not a controller fails to stabilize the desired setpoint.

To conclude, with the designed observer-based output-feedback controller the
drill-string system can effectively deal with uncertainty in the bit-rock interac-
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Figure 3.15: Simulation result of the closed-loop system with a changed
bit-rock interaction for the plant model.
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tion. More specifically, robustness with respect to uncertainty in the nominal
level of the bit-rock interaction, as well as, in the slope of the nonlinearity, has
been obtained. This is an important aspect from practical point of view be-
cause uncertainty in the bit-rock interaction is always present due to a changing
lithology and/or changing conditions due to for example bit wear.

3.7.3 Sensor and actuator noise disturbances

The previous simulations are all performed under ideal conditions regarding
sensors and actuators. In practice, the controller also has to deal with sensor
and actuator noise. In this section, the robustness with respect to such noise
perturbations is investigated and both sensor and actuator noise are taken into
account. The noise disturbances are modelled as additive white noise signals.
That is, the actual top drive torque Ttd is given by Ttd = ut + dTtd with ut the
output from the controller and dTtd the disturbance. The measurement ym is the
actual top drive velocity plus sensor noise, i.e. ym = y+nωtd . The actuator noise
on the top drive torque has a standard deviation of approximately 560 Nm, i.e.
1.5% of the nominal value, this means that the top drive torque varies between
approximately 37.2 kNm and 41.1 kNm (nominal torque in equilibrium is uc =
39.2 kNm). The standard deviation of the sensor noise is also chosen to be
approximately 1.5% of the nominal value, i.e. approximately 0.7 rpm, thus the
measured top drive angular velocity varies between 47.5 rpm and 52.5 rpm.

A simulation of the system including measurement noise is shown in Fig-
ure 3.16. In this figure the actual top drive velocity ωtd(= y) and control action
ut are shown. Compared to the previous simulation results, the response of the
system is similar. A closer look at the states of the system of course shows
some more oscillations caused by the sensor and actuator noise. An important
observation is the difference in the control action from the industrial controller
in the first 50 seconds compared to the control action from the observer-based
controller. As can be seen in the bottom plot, the high-frequent disturbances are
much more filtered by the observer-based controller compared to the industrial
controller. This can be explained by the lack of a roll-off filter in the industrial
controller, while the dynamics in the observer-controller combination do filter
high-frequent oscillations.

3.7.4 Changing length of the drill-string

Another important aspect in the control of drilling systems is the change of
length of the drill-string while drilling. Current controllers need to be re-tuned
during the drilling operation and this re-tuning is prone to errors, resulting in
wrong controller settings and possibly failing to mitigate stick-slip oscillations
due to tuning errors. Additionally, the re-tuning process is time consuming and
requires qualified staff to be present at the rig. Therefore, it is of practical
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Figure 3.16: Simulation result of the closed-loop system with sensor and
actuator noise, the peak-to-peak disturbances are approxi-
mately 10% of the nominal value of the disturbed signal.
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importance to reduce the need for re-tuning due to length changes in the drill-
string. In other words, the controller should be robust with respect to the
increasing length of the drill-string. In this section, the plant model (3.8) is
changed such that the dynamics of the plant correspond to a drill-string of
different length. The controller remains the same and the observer is always
based on the nominal reduced-order model (3.9).

In many drilling operations the drill-string is stopped to rotate to add a new
pipe section. In this analysis, it is assumed that several new stands, of 3 drill
pipes of 9 m length each, are added to the drill-string (i.e. 27 m of length is
added to the drill-string with each stand). In practical situations, the current
industrial controller needs to be re-tuned every stand, and sometimes even after
one or two added drill pipes. The results of the analysis of the linearized closed-
loop system with different lengths are shown in Figure 3.17. The real value of
the right-most eigenvalue is shown as function of changing length compared to
the nominal model. The right-most eigenvalue of the nominal model (indicated
by 0 on the horizontal axis) lies in the LHP as shown in Section 3.6.1. When the
length of the drill-string is decreased the right-most eigenvalue moves further
into the LHP, while for an increase of length the right-most eigenvalue moves
towards the imaginary axis. The same holds for the closed-loop system induced
by the industrial controller (albeit more slowly). However, as mentioned before,
the location of the eigenvalue is not the only important factor. Therefore, also
the H∞-norm1 of the bit-mobility (Gcl) is shown in Figure 3.17. Recall that
the bit-mobility is related to the robustness with respect to the bit-rock inter-
action. The H∞-norm of the closed-loop bit-mobility with the observer-based
controller is approximately a factor 5 lower than the H∞-norm of Gcl with the
industrial controller, as was also visible in the bit-mobility plot (Figure 3.12) for
the nominal case. The minor change of the H∞-norm of the bit-mobility of the
system with the observer-based controller due to a change in drill-string length
and the fact that the right-most eigenvalue is still in the LHP indicates that
the controller is probably able to stabilize the desired equilibrium. To confirm
this conjecture, a simulation result of the closed-loop system with a plant model
that is 135 m (15× 9 m) longer than the nominal model (with a total length of
6249 m) is shown in Figure 3.18.

Compared to previous simulation results, the response of the closed-loop sys-
tem with a plant model representing a drill-string with different length shows
more transient oscillations. Moreover, the frequency of these oscillations is some-
what different; compare for example the oscillations at the bit during the first
50 seconds in Figure 3.15 with the oscillations in Figure 3.18. This is due to
the fact that the eigenfrequencies of the drill-string system have changed due
to the added length, because the stiffness and inertia of the upper part of the
drill-string has changed. Another observation (see zoom plot in Figure 3.18) is
that the state estimates of the reduced-order observer do not exactly match the

1The H∞-norm of a transfer function H(s) is given by ‖H(s)‖∞ := supω∈R (H (jω)) .
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states of the drilling system. This is caused by the mismatch between the plant
model and the model used by the observer. However, as shown in the simulation,
the state estimate is still sufficiently accurate for the controller to stabilize the
desired equilibrium under the applied operating conditions.

The right-most eigenvalue has been determined for more drill-string config-
urations than shown in Figure 3.17. When 45 pipe sections of 9 m are added to
the drill-string the right-most eigenvalue moves into the RHP, indicating that
the linearized closed-loop system is unstable. Simulations with different plant
models show that in practice the controller is able to stabilize the desired set-
point for a drill-string model with a maximum of 39 pipe sections (i.e. 351 m)
added to the nominal model. This is due to the fact that the eigenvalues only
give information about the local stability of the closed-loop, while for the nonlin-
ear closed-loop system also robustness with respect to uncertainties (especially
related to the bit-rock interaction) is important. It can be concluded that a
significant increase in robustness with respect to increasing drill-string length is
obtained compared to the industrial controller.
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Figure 3.18: Simulation result of the closed-loop system and a drill-string
model with increased length (15× 9 m added drill pipe).
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3.8 Discussion

In this work, a nonlinear observer-based output-feedback control strategy is pro-
posed to eliminate torsional stick-slip vibrations in drilling systems. Particular
benefits of the proposed approach with respect to existing controllers are, firstly,
the fact that a realistic multi-modal model of the drill-string dynamics is taken
into account, secondly, that severe velocity-weakening (and uncertainty) in the
bit-rock interaction is taken into account, thirdly, that only surface measure-
ments are employed. Additionally, a guarantee for (local) asymptotic stability of
the closed-loop reduced-order system is given for bit-rock interaction laws lying
within a certain sector (which is beneficial as the bit-rock interaction is subject to
uncertainty in practice). To support controller synthesis, a reduced-order model
is used, based on a high-fidelity finite-element model for the drill-string dynam-
ics. The reduced-order model is constructed such that it captures the dominant
dynamics (flexibility modes) of the original system. Simulation studies show
that the controller design strategy successfully eliminates stick-slip oscillations
when applied to a realistic drill-string model in representative drilling scenarios
for which an industrial SoftTorque controller is unable to do so.

Robustness of the closed-loop drill-string system with respect to several prac-
tical aspects is investigated by means of simulation studies. These studies show
that the closed-loop system with the proposed controller can effectively deal
with sensor and actuator noise, is able to operate for different angular velocity
setpoints and is robust with respect to changes in the bit-rock interaction and
increasing length of the drill-string. Under all the imposed operating conditions
the controller is able to stabilize the desired angular velocity and therefore stick-
slip vibrations are eliminated. These results show that a significant increase in
the operating envelope can be achieved by using the proposed controller design
methodology compared to currently used industrial controllers.



Chapter 4

Design of a linear robust
output-feedback controller

4.1 Introduction

Efficiency, reliability, and safety are important aspects in the drilling of deep
wells for the exploration and production of oil, gas, mineral resources, and geo-
thermal energy. Deep and curved borehole geometries need to be drilled to
reach hydrocarbon reservoirs and extract these natural resources. Drill-strings
of several kilometers in length are used to transmit the axial force and torque
necessary to drill the rock formations. These drill-string systems are known
to exhibit different types of self-excited vibrations, which decrease the drilling
efficiency, accelerate bit wear, and may cause drill-string failure due to fatigue.
The focus of this chapter is on the aspect of mitigation of torsional stick-slip
vibrations by developing a design approach for robust linear output-feedback
controllers.

Modelling of the torsional dynamics of the drill-sting is an important step
towards the control of torsional vibrations. Most controller designs presented in
literature rely on one- or two degree-of-freedom (DOF) models for the torsional
dynamics only, see e.g. [19,51,103,115]. The resisting torque-on-bit (TOB) as a
result of the interaction torques at the bit-rock interface is typically modelled as
a frictional contact with a velocity-weakening effect, i.e., a decrease in the resist-
ing torque for increasing velocity. Although experiments using single cutters to
identify the bit-rock interaction law [22] do not reveal such a velocity-weakening
effect, analysis of models that take the coupled axial and torsional dynamics
into account show that such coupling effectively leads to a velocity-weakening

This chapter is based on [121]
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effect in the TOB [93]. This motivates a modelling-for-control approach involv-
ing the torsional dynamics only and incorporating a velocity-weakening bit-rock
interaction law. In contrast to other studies (see e.g. [19, 40, 51, 53, 103]), how-
ever, we use a multi-modal model of the torsional dynamics as field observations
have revealed that multiple torsional resonance modes play a role in the onset
of stick-slip oscillations [82, 96]. In this work, a finite-element method (FEM)
representation of the drill-string is used to model the drill-string dynamics. A dif-
ferent modelling approach is taken in [34,37], where infinite-dimensional models,
i.e. formulated in terms of partial differential equations, are considered. Using
the same approach as a basis, models in terms of delay-differential equations
are derived in [4, 9, 10, 99]. Recent results as presented in e.g. [10, 30] show that
these representations of the drill-string can also be used for controller design.
However, these methods require assumptions on the bit-rock interaction and/or
trivialize the BHA as a single inertia. Discretizations of such infinite-dimensional
models (see [62]) result in a lumped parameter model, based on a finite-element
representation of the drill-string dynamics; this is the approach also taken in
this chapter. Summarizing, in order to adopt a model-based controller design
strategy, we use a FEM model of the drill-string dynamics involving the torsional
dynamics only and with a velocity-weakening bit-rock interaction law.

Controllers for drilling systems aim at drill-string rotation at a constant an-
gular velocity and the mitigation of torsional (stick-slip) vibrations. Moreover,
the following control specifications are important. First, only surface measure-
ments can be used for feedback, because down-hole measurements for real-time
control purposes are not available in practice, due to limitations on the sampling
rate, time delay of the measurements, and/or the high costs involved. Second,
the controller should be able to cope with dynamics related to multiple torsional
flexibility modes. Third, robustness with respect to uncertainty in the bit-rock
interaction has to be guaranteed and, fourth, control performance specifications,
related to e.g. measurement noise sensitivity and actuator constraints, need to
be taken into account in the control design.

A well-known control method that uses both torque feedback and (top drive)
velocity feedback to damp the first torsional mode, is the Soft Torque Rotary
system [40]. The same objective is set in [51], which uses a PI-controller to
damp the first resonance mode based on feedback of the top drive velocity only.
Other control methods, including torsional rectification [115], observer-based
output-feedback [19,25,122], feedback linearization [1], impedance matching [30],
adaptive output-feedback for wave PDE [10], backstepping control [97], sliding
mode control [81], model predictive control [52], weight-on-bit (WOB) control
[12] and robust control [53, 103] have been developed and are documented in
literature.

Although important steps have been made in the above works, an approach
that satisfies all mentioned requirements has not yet been developed. A ro-
bust control approach, as proposed in [53, 103], is particularly suitable for this
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problem since robustness with respect to uncertainty of the system dynamics
and control performance specifications can be taken into account in the control
design in addition to guaranteeing internal stability of the closed-loop system.
For drill-string models focusing on torsional dynamics, the nonlinear bit-rock
interaction model is often difficult to determine and is therefore considered as
such an uncertain factor. In [103], an H∞ controller synthesis method is used to
design a controller for a 2-DOF drill-string model. Moreover, it is assumed that
the twist in the drill-string can be measured, i.e. knowledge about the angular
position of the bit is assumed to be known. In [53], the µ-synthesis technique
through a DK-iteration procedure is used to obtain less conservative bounds
on the uncertainty and obtain robustness with respect to the nonlinear bit-rock
interaction. The used model is a similar 2-DOF model and also in this case
down-hole measurements (to asses the twist of the drill-string) are used. As
mentioned before, multiple torsional flexibility modes are important in the onset
of stick-slip vibrations, whereas the 2-DOF models employed in [103] and [53],
only take the first flexibility mode into account and rely on down-hole measure-
ments. In this chapter, we propose a robust controller design technique on the
basis of a finite-element method drill-string model which relies only on surface
measurements.

The main contribution of this chapter is the design of a robust output-
feedback controller methodology to eliminate stick-slip vibrations with the fol-
lowing advantages over existing controllers: 1) usage of surface measurements
only, 2) application of the controller to multi-modal drill-string models while
guaranteeing local stability of the desired setpoint, 3) optimization of the robust-
ness with respect to uncertainty in the bit-rock interaction and, 4) integration of
control performance specifications in the design approach. Preliminary results
of this controller design strategy applied to a 4-DOF dril-string model have been
presented in [120]. In this chapter, the controller methodology is applied to a
18-DOF finite-element method representation of a real drilling system. Addi-
tionally, the robustness of the closed-loop system is investigated in model-based
case studies. The following robustness aspects are key in the scope of practi-
cal applications, and are extensively studied in this chapter: robustness with
respect to changes in the bit-rock interaction characteristic, increasing length
of the drill-string, different desired angular velocities (i.e. increased operating
envelope), and sensor and actuator noise. Furthermore, a comparison between
the proposed controller design strategy and the observer-based output-feedback
controller design strategy presented in Chapter 3 will be made.

This chapter is organized as follows. In Section 4.2, the drill-string model
based on a finite-element model of a real-life drilling rig is introduced. Subse-
quently, in Section 4.3 the control problem is formulated. Next, in Section 4.4
the design of an output-feedback controller based on skewed-µ DK-iteration is
proposed and the controller synthesis by weighting filter design is treated in
Section 4.5. In Section 4.6, simulation results illustrating the effectiveness of
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the proposed approach are presented and compared with the results obtained
using an industrial controller (SoftTorque [51]). Moreover, a comparison with
the observer-based output-feedback controller design methodology developed in
Chapter 3 is made. Next, in Section 4.7 the robustness of the controller is investi-
gated by means of several simulation studies involving realistic drilling scenarios,
for example increasing length of the drill-string and disturbances due to sensor
and actuator noise. Finally, the results are summarized in Section 4.8.

4.2 Drill-string dynamics model

A finite-element method (FEM) model of a realistic drilling system is used as
basis for controller design in this chapter. The model is based on an offshore
jack-up drilling rig to reach reservoir sections at depths of >6000 m. The rig is
equipped with an AC top drive and fitted with a modern SoftTorque system [64].
When drilling those deep wells, stick-slip vibrations have been observed in the
field for this drilling system, as shown in Figure 2.2 [39]. This motivates the
use of this drill-string model as basis for the development of a novel controller
design methodology.

The finite-element method is used to construct a multi-modal torsional drill-
string model (with 18 elements). The element at the top is a rotational inertia to
model the top drive inertia, the subsequent elements are equivalent pipe sections
based on the dimensions and material properties of the drill-string. The resulting
model can be written as

Mθ̈ +Dθ̇ +Ktθd = SwTw(θ̇) + SbTbit(θ̇1) + StTtd (4.1)

with the coordinates θ ∈ Rm with m = 18, the top drive motor torque in-
put Ttd ∈ R being the control input, the bit-rock interaction torque Tbit ∈ R
and the interaction torques Tw ∈ Rm−1 between the borehole and the drill-
string acting on the nodes of the FEM model. The coordinates θ represent
the angular displacements of the nodes of the finite-element representation.
Next, we define the difference in angular position between adjacent nodes as

follows; θd :=
[
θ1 − θ2 θ2 − θ3 · · · θ17 − θ18

]>
. In (4.1), the mass, damping and

“stiffness” matrices are, respectively, given by M ∈ Rm×m, D ∈ Rm×m and
Kt ∈ Rm×m−1, the matrices Sw ∈ Rm×m−1, Sb ∈ Rm×1 and St ∈ Rm×1 rep-
resent the generalized force directions of the interaction torques, the bit torque
and the input torque, respectively. The coordinates θ are chosen such that the
first element (θ1) describes the rotation of the bit and the last element (θ18) the
rotation of the top drive at surface. The interaction between the borehole and
the drill-string is modelled as Coulomb friction, that is

Tw,i ∈ Ti Sign
(
θ̇i

)
, for i = 2, . . . , 18, (4.2)
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with Ti representing the amount of friction at each element and the set-valued
sign function defined as

Sign (y) ,




−1, y < 0
[−1, 1] , y = 0
1, y > 0.

(4.3)

The bit-rock interaction model, including the velocity-weakening effect, is given
by

Tbit(θ̇1) ∈ Sign
(
θ̇1

)(
Td + (Ts − Td) e−vd|θ̇1|

)
(4.4)

with Ts the static torque, Td the dynamic torque and vd := 30
Ndπ

indicating the
decrease from static to dynamic torque. For this model, the parameters are tuned
such that a match between the simulation results and the (surface) field data is
obtained. The parameter values are given by Ts = 7700 Nm, Td = 1700 Nm,
Nd = 5 rpm, the resulting bit-rock interaction model is shown Figure 3.1. The
drill-string-borehole interaction torques Tw,i(θ̇i), i = 2, . . . , 18 are defined by

φ(q2) :=
[
Tw,2(θ̇2) · · · Tw,18(θ̇18)

]>
with q2 :=

[
θ̇2 · · · θ̇18

]>
and the interaction

torque at the bit-rock interface is written as ϕ(q) := Tbit(θ̇1). The resulting
equations of motion are written in first-order state-space form:

ẋ = Ax+Gv +G2v2 +But
q = Hx
q2 = H2x
y = Cx
v ∈ −ϕ(q)
v2 ∈ −φ(q2).

(4.5)

Herein, x :=
[
θd θ̇

]> ∈ R35 is the state, note that only relative positions are
taken into account, such that the 18-DOF system is described with only 35 state

variables. Moreover, ut := Ttd ∈ R is the control input and, y :=
[
ωtd Tpipe

]> ∈
R2 is the measured output. The top drive velocity and bit velocity are defined
as ωtd := θ̇18 and ωbit := θ̇1, respectively. The available measurements are the
top drive velocity ωtd and the pipe torque Tpipe, which is defined as the torque in
the drill-string directly below the top drive (sometimes also referred to as saver
sub torque).

One of the relevant frequency response functions of the linear part of the
dynamics (4.5) is shown in Figure 4.1. This frequency response function is called
the bit-mobility, as it describes the transfer from bit torque to bit velocity. The
bit-mobility gives an indication of the dominant resonance modes in the onset of
stick-slip vibrations. Namely, it is the input-output dynamics represented by the
bit-mobility which, in ‘closed-loop’with the nonlinear bit-rock interaction law,
that is responsible for the presence (or not) of torsional instabilities and stick-
slip vibrations. Therefore, damping of the resonance modes in the bit-mobility
plays an important role in the controller design methodology in Section 4.4.
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Figure 4.1: Frequency response function of the 18-DOF model from bit
torque Tbit to bit velocity ωbit, i.e. bit-mobility.

4.3 Control problem formulation

In Section 4.3.1, we formulate the control problem and specify the controller
objectives. Additionally, in Section 4.3.2 we apply a loop transformation to the
model in (4.5) to render it amendable for controller design in Section 4.4.

4.3.1 Controller objectives

The desired operation of the drill-string system is a constant angular velocity
ωeq for the entire drill-string. So, the objective is to regulate the nonlinear drill-
string system to this setpoint by means of an output-feedback controller. The
available measurements for the controller are the top drive angular velocity ωtd
and the pipe torque Tpipe, which implies that only surface measurements are
employed. The system can be controlled by the top drive torque Ttd. As briefly
mentioned in the introduction, the controller should

1. locally stabilize the constant rotational velocity ωeq of the drill-string,
therewith eliminating torsional (stick-slip) vibrations;

2. ensure robustness with respect to uncertainty in the nonlinear bit-rock
interaction ϕ;
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3. guarantee the satisfaction of closed-loop performance specifications, in par-
ticular on measurement noise sensitivity, i.e., limitation of the amplification
of measurement noise, and limitation of the control action such that top
drive limitations can be satisfied;

4. guarantee robust stability and performance in the presence of multiple
flexibility modes dominating the torsional dynamics.

4.3.2 Model reformulation

To facilitate controller synthesis, the drill-string dynamics (4.5) are rewritten
in a specific form. The desired constant angular velocity ωeq can be associated
with a desired equilibrium xeq for the state of the system. To ensure that xeq is
indeed an equilibrium of the closed-loop system, the control input ut = uc+ ũ is
decomposed in a constant feedforward torque uc (inducing xeq) and the feedback
control input ũ. For the purpose of feedforward design, we assume that ωi > 0,
for i = 2, . . . , 18; then it follows from (4.2) that the resistive torques along the
drill-string (φi) are constant. Hence φ is constant and can be compensated for by
uc. The (constant) equilibrium xeq and feedforward torque uc can be obtained
from the equilibrium equation of system (4.5):

Axeq −Gϕ(Hxeq)−G2φ(H2xeq) +Buc 3 0 (4.6)

Next, let ξ := x − xeq. Moreover, we apply a linear loop transformation such
that the slope of a transformed nonlinearity ϕ̃(q) (associated to ϕ(q) through
the loop transformation) is equal to zero at the desired equilibrium velocity, i.e.
∂ϕ̃
∂q

∣∣∣
q=ωeq

= 0. This results in the following state-space representation of the

transformed drill-string dynamics in perturbation coordinates:

ξ̇ = Atξ +Bũ+Gṽ (4.7a)

q̃ = Hξ (4.7b)

ỹ = Cξ (4.7c)

ṽ ∈ −ϕ̃ (q̃) (4.7d)

with At := A + δGH, δ = − ∂ϕ
∂q

∣∣∣
q=ωeq

> 0, ỹ := y − Cxeq, q̃ := q − Hxeq,

ϕ̃ (q̃) := ϕ (q̃ +Hxeq)−ϕ (Hxeq)+δq̃ and ṽ := v−veq−δq̃. The dynamics in (4.7)
represents a Lur’e-type system, see Figure 4.2(a), with the linear dynamics Gol
((4.7a) -(4.7c)), having inputs ũ and ṽ and outputs ỹ and q̃, and the nonlinearity
ϕ̃ in the feedback loop. The open-loop transfer function Gol(s) is defined as

[
q̃(s)
ỹ(s)

]
:= Gol(s)

[
ṽ(s)
ũ(s)

]
=

[
g11(s) g12(s)
g21(s) g22(s)

] [
ṽ(s)
ũ(s)

]
. (4.8)



76 Chapter 4. Design of a linear robust output-feedback controller

Gol

ϕ̃ (·)

q̃ṽ
−

ũ ỹ

(a)

∆

Gol

ũ ỹ

q̃v̌

(b)

Figure 4.2: Block diagram of the system dynamics (4.7) in Lur’e type
form (a) and the linear dynamics Gol with (complex) model
uncertainty ∆ (b).

P

K

z

yu

w

N

∆
q̄v̄

Figure 4.3: General control configuration with uncertainty block ∆.

As a next step, we model the nonlinearity ϕ̃ (Figure 4.2(a)) by an uncertainty
∆ (Figure 4.2(b)). This model formulation is used in the controller design ap-
proach developed in Section 4.4. Note that ϕ̃ describes a nonlinear mapping
from q̃ to ṽ, while the uncertainty ∆ is assumed to be a (complex) LTI uncer-
tainty (with output v̌). This means that, for example, stability of the closed-loop
system with uncertainty ∆ does not directly imply stability for the closed-loop
system with nonlinearity ϕ̃. Nevertheless, the model in Figure 4.2(b) is used as
a basis for controller synthesis in the next section. Subsequently, the stability of
the nonlinear closed-loop system is analyzed in detail in Section 4.4.4.

4.4 Controller design methodology

In this section, we present a robust control design approach based on skewed-
µ DK-iteration. This technique combines several concepts from robust control
theory to design a linear controller that achieves robust stability and performance
of a system with model uncertainties [106].

Robust control methods focus on the design of controllers while system un-
certainties are explicitly taken into account in the design. The general control
configuration for a (LTI) plant P with an uncertainty ∆ and (LTI) controller K
is shown in Figure 4.3, where y is the measured output, u the control output and
w and z represent the exogenous inputs and outputs. This structure is similar
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to the block diagram in Figure 4.2(b) with in addition the controller K and
the performance inputs and outputs w and z, respectively. The system P , in
Figure 4.3, can be described by



q̄
z
y


 =



P11 P12 P13

P21 P22 P23

P31 P32 P33





v̄
w
u


 . (4.9)

The system N is defined as the lower linear fractional transformation (LFT) of
the plant P with the controller K, that is

N := Fl (P,K) =

[
P11 P12

P21 P22

]
+

[
P13

P23

]
K (I − P33K)

−1 [P31 P32

]
.

With the introduction of the controller K we can also introduce the closed-
loop bit-mobility function. The closed-loop bit-mobility transfer function Gcl
from input the ṽ to the output q̃, of system (4.7) with controller K, is defined
by

Gcl := g11 − g12K(I + g22K)
−1
g21. (4.10)

As mentioned in Section 4.2 this bit-mobility plays an important role in the
stability of the closed-loop system (see Section 4.4.4) and is therefore important
in the controller design methodology.

4.4.1 Nominal stability and performance

As mentioned in Section 4.3.1, the controller design aims at stability, perfor-
mance, and robustness for the uncertainty ∆. In this section, the focus is on the
first two aspects. Robustness is considered in the next section. Hereto, consider
the system without uncertainty given by

[
z
y

]
:= Psub

[
w
u

]
=

[
P22 P23

P32 P33

] [
w
u

]
(4.11)

and the lower LFT of Psub with the controller K, that is, N22 := Fl (Psub,K).
Based on the system representation in Figure 4.2(b), the closed-loop system

of the linear drill-string dynamics Gol in feedback with the linear, dynamic
controller K to be designed is shown in Figure 4.4. In this representation,
additional inputs n and d are introduced, representing measurement noise and

actuator noise, respectively. Define the unweighted inputs w :=
[
n d
]>

and

unweighted outputs z :=
[
e u
]>

such that the closed-loop transfer functions
between w and z equal the relevant sensitivity functions, as follows:

[
e
u

]
= −

[
(I + g22K)

−1
(I + g22K)

−1
g22

K(I + g22K)
−1

K(I + g22K)
−1
g22

] [
n
d

]
, (4.12)
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q̃v̌
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Figure 4.4: Linear drill-string dynamics Gol in closed-loop with the con-
troller K and including model uncertainty ∆.

where g22 is the open-loop transfer function of the linear drill-string dynamics
Gol, from input ũ to output ỹ as defined in (4.8). Performance specifications
can now be introduced by the design of weighting functions for these sensitiv-
ity functions. For example, consider the sensitivity function S = (I +GK)

−1

(for a SISO plant and controller, G and K, respectively) and the upper bound
1/ |wP (s)| on this sensitivity function, where wP (s) is the weighting filter to be
specified. Then

|S(jω)| < 1/ |wP (jω)| , ∀ω ⇔ |wP (jω)S(jω)| < 1, ∀ω.

In a general setting, the latter fact implies that the bound on the sensitivity can
be written as a norm-bound on the product of the weighting filter and sensitivity
function, i.e. ‖wPS‖∞ < 1, where we used the definition of the H∞-norm

‖H(s)‖∞ := sup
ω∈R

σ̄ (H (jω)) . (4.13)

This is a key element in the design of a controller that guarantees nominal
performance.

The concept nominal performance is defined as follows: for a system without
uncertainty ∆ the closed-loop system N22 = Fl(Psub,K) is internally stable and
the H∞-norm of this system (from w to z) is smaller than 1, that is

‖N22‖∞ = sup
ω
σ̄ (Fl(Psub,K)) < 1. (4.14)

This means that nominal performance can be achieved by solving the “standard”
H∞ optimal control problem, where the aim is to find the internally stabilizing
controller K which minimizes ‖Fl(Psub,K)‖∞. Internal stability of the closed-
loop can be guaranteed by a proper choice of the inputs w and outputs z. As
proved in [130, Section 5.3], by choosing w and z as the weighted version of w
and z, the H∞ controller synthesis guarantees internal stability of the closed-
loop system. Specification of the weighting filters is treated in more detail in the
Section 4.4.2. Moreover, the system with uncertainty is addressed in the next
section, leading to the concept of robust performance.

Summarizing, using the H∞ controller synthesis procedure we are able to
design a internally stabilizing controller K which minimizes ‖Fl(P,K)‖∞, hence
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we achieve nominal performance for a system without uncertainty. However, we
would like to mention that we are interested in a stabilizing controller for the
system with uncertainty, therefore, the robust performance problem is discussed
in the next section.

4.4.2 Alternative robust performance

Robust performance means that the performance objective, addressed in Sec-
tion 4.4.1, is achieved for all possible models in the uncertainty set [106]. In
other words, in addition to internal stability and satisfying performance specifi-
cations for a nominal plant (as treated in Section 4.4.1), it is required that the
closed-loop system is robust with respect to the uncertainty ∆.

Remark 4.1. Standard robust performance techniques aim at optimizing the
performance for all possible plants in the uncertainty set. In contrast, we aim to
optimize the robustness with respect to the uncertainty while still guaranteeing
internal stability and satisfaction of given performance objectives. This is what
we call ‘alternative robust performance’.

Consider the system P in Figure 4.3, including the uncertainty block ∆. The
input-output pair v̄, q̄ is related to this uncertainty block and the (weighted)
closed-loop transfer function N(s) = Fl (P,K) is given by

[
q̄
w

]
= N

[
v̄
z

]
= Fl (P,K)

[
v̄
z

]
. (4.15)

Robust stability is obtained by designing a controller K such that the sys-
tem N is internally stable and the upper LFT, F := Fu(N,∆), is stable for
all ∆ ∈ ∆. Herein, the uncertainty set is a norm-bounded subset of H∞,
i.e., ∆ = {∆ ∈ RH∞|‖∆‖∞ < 1}. H∞ is a (closed) Banach space of matrix-
valued functions that are bounded on the imaginary axis. The real rational
subspace of H∞ is denoted by RH∞ which consists of all proper and real ra-
tional stable transfer matrices [130, Section 4.3]. The aim is to find a stabi-
lizing controller that also meets certain performance specifications. Therefore,
we use a similar approach as in [106, Section 8.10] and consider the fictitious
‘uncertainty’ ∆P . The uncertainty ∆P is a complex unstructured uncertainty
block which represents the H∞ performance specifications, as explained for the
weighted sensitivity function in Section 4.4.1. Moreover, note that ∆P ∈ ∆P ,
with ∆P = {∆P ∈ RH∞ |‖∆P ‖∞ < 1}. The result given in [130, Theorem 11.8]
states that a robust performance problem is equivalent to a robust stability prob-
lem with the augmented uncertainty

∆̂ =

[
∆ 0
0 ∆P

]
(4.16)
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with ∆̂ a block-diagonal matrix. In other words, both the performance specifi-
cations and uncertainty are taken into account in a similar fashion. Moreover ∆̂
is the uncertainty set with the structure as given in (4.16) and any ∆ ∈ ∆ and
∆P ∈∆P . The robust performance condition can now be formulated as follows:

µ∆̂ (N(jω)) < 1, ∀ω, (4.17)

where µ∆̂ is the structured singular value with respect to ∆̂. The structured
singular value is defined as the real non-negative function

µ∆̂(N) =
1

k̄m
, k̄m = min

{
km

∣∣∣det
(
I − kmN∆̂

)
= 0

}
(4.18)

with complex matrix N and block-diagonal uncertainty ∆̂.
To optimize the robustness with respect to the uncertainty ∆ (i.e. part of

∆̂ in (4.16)), the skewed structured singular value µs can be used. The skewed
structured singular value is used if some uncertainty blocks in ∆̂ are kept fixed
(∆P in this case) to investigate how large another source of uncertainty (∆ in this
case) can be before robust stability/performance cannot be guaranteed anymore.
In this case, we aim to optimize the robustness of the closed-loop system with
respect to uncertainty ∆ in the bit-rock interaction. Thus we aim to obtain
the largest possible uncertainty set ∆, given a fixed ∆P (i.e. fixed performance
specifications). Hereto, we introduce the matrix Ks

m := diag (ksm, I) and the
skewed structured singular value µs

∆̂
(N) can then be defined as

µs
∆̂

(N) =
1

k̄sm
, k̄sm = min

{
ksm

∣∣∣det
(
I −Ks

mN∆̂
)

= 0
}
. (4.19)

Thus, the robust performance condition (4.17), with additional scaling (through
Ks
m) in terms of the skewed structured singular value, can be written as

µs
∆̂

(N(jω)) < 1, ∀ω. (4.20)

To support controller design satisfying particular performance specifications,
weighting filters and scaling matrices are introduced in the loop in Figure 4.4,
as shown in Figure 4.5. Those frequency-domain weighting filters allow us to
specify the (inverse) maximum allowed magnitudes of the closed-loop transfer
functions in (4.12). Moreover, the scaling matrices are introduced to improve
the numerical conditioning of the problem and to tune the desired bandwidth.
The (weighted) generalized plant P with input weighting filters Vi(s) and output
weighting filters Wi(s), with i ∈ {1, 2, 3}, and scaling matrices Wsc and Vsc, is
specified by




q̄
ē
ū
e


 =




W1 0 0 0
0 W2Wsc 0 0
0 0 W3 0
0 0 0 I2


P




V1 0 0 0
0 VscV2 0 0
0 0 V3 0
0 0 0 1




︸ ︷︷ ︸
P




v̄
n̄
d̄
u
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ũ

Figure 4.5: Closed-loop system with weighting filters and scaling matrices.

D−1D

D

∆̂=

[
∆ 0
0 ∆p

]

D−1 N(K) Ks
m

Figure 4.6: Block diagram of the implementation for the skewed-µ DK-
iteration procedure.

Herein, P (s) is the MIMO transfer function of the unweighted system P with

inputs
[
ṽ n d u

]>
and outputs

[
q̃ e u e

]>
with its state-space realization given

by

P
s
=




At G 0 B B
H 0 0 0 0
−C 0 −I 0 0
0 0 0 0 I
−C 0 −I 0 0



. (4.21)

In this section, we have introduced an alternative robust performance frame-
work. To design a controller that minimizes the skewed structured singular value
µs

∆̂
, for the purpose of obtaining robust performance, a procedure to synthesize

such controller, known as the DK-iteration procedure, is treated in Section 4.4.3.

4.4.3 Skewed-µ DK-iteration

This section focuses on the synthesis of a controller that minimizes a skewed
structured singular value µs

∆̂
to obtain closed-loop robust performance. The

so-called skewed-µ DK-iteration procedure is used to synthesize a controller.
The first step in such DK-iteration procedure is the introduction of D-scaling
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matrices. This scaling uses the fact that ∆̂ is structured and is such that stability
is not affected. Hence, the inputs and outputs to ∆̂ and N are scaled by inserting
the matrices D and D−1 on both sides as shown in Figure 4.6. Clearly, this has
no effect on stability. Using such scaling, generally enables to find potentially
tighter robust stability/performance conditions. Therefore, we define a block-
diagonal scaling matrix D := diag (d1, d2I) with scalars di, i = 1, 2. Note that
with the chosen form of D, it holds that ∆ = d1∆d−1

1 and ∆P = d2I∆P d
−1
2 I;

that is, we have ∆̂ = D∆̂D−1. Moreover, N(s) is stable by design of the
controller K and we assume that ∆̂(s) is also stable. Then, an upper bound for
the skewed structured singular value can be obtained as follows:

µs
∆̂

(N(jω)) ≤ min
D(ω)∈D

σ̄
(
D(ω)Ks

mN(jω)D(ω)−1
)
, (4.22)

where D is the set of (frequency-dependent) block-diagonal matrices D(ω) whose
structure is compatible to that of ∆̂, i.e. ∆̂D = D∆̂ (see [106] for more details).
Using the upper bound in (4.22), the robust performance condition (4.20), can
be replaced by the (potentially) stricter condition

min
D(ω)∈D

σ̄
(
D(ω)Ks

mN(jω)D(ω)−1
)
< 1, ∀ω. (4.23)

This condition is the basis for the skewed-µ DK-iteration procedure.
The skewed-µ DK-iteration procedure aims at designing a controller that

minimizes the peak value over frequency of the upper bound on the skewed
structured singular value, i.e. a controller K should be designed by solving the
following optimization problem:

min
K

(
min
D

∥∥DKs
mN(K)D−1

∥∥
∞

)
. (4.24)

Here, the original scaling matrix D(ω) is replaced by a stable minimum-phase
transfer function fit D(s) of D(ω). The dependency of the closed-loop trans-
fer function N on the controller K is indicated by N(K). In DK-iterations, a
µ-analysis (D-step) and H∞-optimization (K-step) are solved alternately (see
[84]). In other words, the skewed-µ DK-iteration procedure alternates between
minimizing (4.24) with respect to either K or D (while holding the other fixed)
and recursively updating ksm during the D-step. This procedure can be summa-
rized as follows:

1. K-step: Synthesize an H∞-controller K(s) for the scaled problem
minK

∥∥DKs
mN(K)D−1

∥∥
∞ with fixed D(s) and ksm.

2. D-step: Find D(ω) to optimize at each frequency
minD(ω)∈D σ̄

(
D(ω)Ks

mN(K)D(ω)−1
)
, for fixed K(s) and ksm. Moreover, if∥∥DKs

mN(K)D−1
∥∥
∞ 6= 1, update ksm recursively using

ksm = 1
‖DKs

mN(K)D−1‖ k̃
s
m with k̃sm the previous value of ksm. Continue

this iterative procedure until
∥∥DKs

mN(K)D−1
∥∥
∞ = 1.
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3. Fit the magnitude of each element of D(ω) to a stable, minimum-phase
transfer function D(s) and go back to step 1.

A fundamental problem with the DK-iteration procedure is the fact that it may
converge to a local optimum. This is a result of the fact that although each
of the minimization steps are convex, the overall optimization problem is not.
However, as is also claimed in [106, Section 8.12.1], the algorithm performs well
in practice.

4.4.4 Closed-loop stability analysis

The main purpose of the controller is to stabilize the equilibrium ξ = 0 of
the nonlinear system (4.7). Let us assume a controller K has been designed
that meets the performance specifications and is robust with respect to the
uncertainty ∆. Hence, the designed controller guarantees stability for the linear
closed-loop system N(s) and achieves robustness with respect to the specified
uncertainty ∆. In this section, the stability of the nonlinear closed-loop system is
investigated. Hereto, we define a symmetric sector condition on the nonlinearity
ϕ̃, such that for any (locally Lipschitz) nonlinearity within this sector asymptotic
stability of the origin of the closed-loop system can be guaranteed.

We use the circle criterion [54, Theorem 7.1] to determine a (symmetric)
sector on the nonlinearity ϕ̃ for which robust stability can be guaranteed. Con-
sider the closed-loop bit-mobility (4.10). Moreover, consider a symmetric sector
condition on the nonlinearity, i.e. ϕ̃ ∈ [−γ, γ] for γ > 0. According to the circle
criterion, the nonlinear system is absolutely stable (i.e. ξ = 0 is asymptotically
stable for any ϕ̃ ∈ [−γ, γ]) if

H(s) = (1 + γGcl(s)) (1− γGcl(s))−1
, (4.25)

is strictly positive real. Applying Lemma 6.1 in [54], a scalar transfer function
H(s) is strictly positive real if the following conditions are satisfied:

1. H(s) is Hurwitz;

2. Re [H(jω)] = Re
[

1+γGcl(jω)
1−γGcl(jω)

]
> 0, ∀ω ∈ R;

3. H(∞) > 0.

For the symmetric sector, the condition on H(s) being Hurwitz is equivalent to
Gcl(s) being Hurwitz. The closed-loop transfer function Gcl(s) of the feedback
interconnection is Hurwitz by the design of the stabilizing controller K. More-
over, Gcl is strictly proper, therefore H(∞) = 1, such that the third condition
is satisfied. The second condition is equivalent to the condition:

‖Gcl(jω)‖∞ <
1

γ
. (4.26)
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Hence, the H∞-norm of the closed-loop bit-mobility Gcl gives an upper bound
on the sector that the nonlinearity ϕ̃ should comply with, for the system to be
absolutely stable. With the DK-iteration procedure, presented in Section 4.4.3, a
controller K can be designed such that ‖Gcl‖∞ is minimized. In other words, the
robustness with respect to uncertainty in the bit-rock interaction is optimized.
Note that for this aim at maximum robustness with respect to uncertainty in
the bit-rock interaction the alternative robust performance technique (see Sec-
tion 4.4.2) is necessary. Because standard robust performance techniques aim
at optimizing the performance for all possible plants in a given uncertainty set.
While we aim to optimize the robustness with respect to uncertainty, satisfying
a set of given performance objectives.

In the following section, the settings for the controller synthesis (i.e. tuning
of the weighting filters) are explained and the designed controller is presented.

4.5 Controller synthesis

Weighting filter design is key in satisfying the performance specifications re-
lated to, e.g., measurement noise sensitivity and actuator limitations. Moreover,
achieving specific design targets such as the inclusion of integral action and high-
frequency roll-off can be achieved by absorbing these filters in the loop, see [73].
High-frequency roll-off reduces measurement noise amplification. Also, integral
action is desired from a practical point of view, e.g., in case of a mismatch
between the (model-based) feedforward torque uc and the actual required feed-
forward torque due to uncertainty in the model for the bit-rock interaction and
uncertainty in the model for the drill-string borehole interaction. In that case,
integral action will compensate for this mismatch to obtain the desired setpoint.

For the design of a controller for the drill-string model (4.5), the following
objectives are set:

• Integral action below 0.1 Hz, i.e. the controller should have an integrator
with a zero at 0.1 Hz;

• First-order roll-off at 6 Hz, so for frequencies above 6 Hz the controller
reduces the amplification of disturbances;

• Cross-over frequency of the open-loop transfer function KGol (at the plant
input) at 0.7 Hz, i.e. above the third eigenfrequency of the drill-string
system (see Figure 4.1);

• Plant output scaling, i.e. scale the plant output y =
[
ωtd Tpipe

]>
such that

the components of the weighted plant output ȳ are in the same order of
magnitude.
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These objectives are obtained by specific choices for several settings of the
weighting filters. The specific choice for these weighting filters will be discussed
in the remainder of this section.

4.5.1 Weighting filter design

First, we apply plant scaling by using the scaling matrices Wsc and Vsc. This
scaling is applied to compensate for the different order of magnitude of the
two plant outputs ωtd and Tpipe. This is important for a system with multiple
outputs in a norm-based controller synthesis method such as skewed-µ DK-
iteration. When the plant outputs are not scaled and the outputs differ in order
of magnitude, one off-diagonal term in the closed-loop sensitivity function will be
large and the other small. In the synthesis, it is then possible that the emphasis
is on reducing the large off-diagonal element at the expense of other elements.
The plant scaling matrices Wsc and Vsc are tuned to compensate for this effect.
The matrices are given by

Wsc =

[
wsc1 0

0 wsc2

]
, Vsc = W−1

sc

with wsc1 = 10 and wsc2 = 0.01.
The filters Vi(s) and Wi(s) are so-called performance filters and used to tune

the performance related properties of the closed-loop system. The filters V1(s)
and W1(s) can be used to tune the closed-loop bit-mobility (Gcl). Ideally, the
bit-mobility should be damped as much as possible (as follows from the stability
analysis in Section 4.4.4). However, this typically results in high control action.
To deal with this trade-off, the weighting filter V1(s) has two notch filters and
is defined as follows:

V1 = v1Wnotch,1Wnotch,2

= v1

1

(2πf1,1)2
s2+

2b1,1
2πf1,1

s+1

1

(2πf1,2)2
s2+

2b1,2
2πf1,2

s+1

1

(2πf2,1)2
s2+

2b2,1
2πf2,1

s+1

1

(2πf2,2)2
s2+

2b2,2
2πf2,2

s+1

(4.27)

with fi,j (j = 1, 2) the frequencies of the notch filters Wnotch,i(s) (i = 1, 2)
and bi,1 and bi,2 parameters to tune the depth of the notch filter. The output
weighting filter W1(s) is set to W1 = 1, since tuning of V1(s) only suffices to
specify the desired bound on the bit-mobility.

The remaining weighting filters are the filters to tune the closed-loop per-
formance transfer functions in (4.12). Let us first focus on the input weighting
filters V2(s) and V3(s). The filter V2(s) is given by

V2 =

[
v21 0
0 v22

]
(4.28)

with v21 and v22 static gains. These gains, as well as static gains in other
weighting filters, are used to scale the weighting filters. Scaling is necessary to
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obtain a feasible controller design with respect to the performance uncertainty
∆P (s) and changing the gains allows for the synthesis of different controllers.
The input weighting filter V3(s) is set as

V3(s) = v3‖gco‖−1 1

wsc1
, (4.29)

where v3 is a static gain and gco := g22,1(j2πfco), i.e. the sub plant gain, related
to input ũ and output ỹ1 = ωtd − ωeq, at the target cross-over frequency fco.
This gain is chosen to obtain a cross-over frequency of the open-loop transfer
function KGol at 0.7 Hz as specified. This cross-over frequency is chosen to
achieve damping of the dominant resonance modes.

The output weighting filters W2(s) and W3(s) are also used to tune the
closed-loop transfer functions, but in addition, these filters are also used to meet
the first two controller objectives, i.e. to include integral action and first-order
roll-off. The controller Kt(s) to be designed has two inputs and a single output
(due to the two measured signals of the plant), i.e. Kt(s) =

[
Kωtd(s) KTpipe(s)

]
.

The controller aims at stabilizing the desired angular velocity setpoint. Hence,
an integrator should be specified in the top drive angular velocity control loop.
Note that it is not possible (and not necessary) to include an integrator in both
control loops Kωtd(s) and KTpipe(s). An integrator would force the sensitivity
function to zero for s = 0; however this is not possible for both sensitivity
functions, due to the fact that we are dealing with a non-square plant. In other
words, there is only one control signal that can eliminate the steady-state error
for one of the two measurements. However, forcing ωtd to its equilibrium value
also results in Tpipe converging to its equilibrium. So, by only requiring integral
action in the control loop related to ωtd, the output weighting filter W2(s) is
given by

W2(s) =

[
WI(s) 0

0 w22

]
=

[
PI

s+2πfI
s 0

0 w22

]
(4.30)

with WI(s) to obtain an integral action in Kωtd(s) and w22 a static gain. To
obtain high-frequency roll-off, a roll-off filter is included in the output filter
W3(s), hence

W3(s) = w3wsc1 ‖gco‖W−1
R (4.31)

with w3 a static gain, WR = 2πfR
s+2πfR

the roll-off filter with roll-off frequency fR.

The weighting filters W2(s) and W3(s) are unstable and non-proper weight-
ing filters, respectively. Therefore, these filters are not applicable in the H∞-
controller synthesis. To circumvent this limitation and still obtain a controller
that includes integral action and high-frequency roll-off, we add filters in the
loop [73]. We require high-frequency roll-off on both input signals (top drive
velocity and pipe torque) of the controller and integral action on the top drive
velocity. To do so, the actual plant that is used in the controller synthesis
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Table 4.1: Parameter settings for the performance weighting filters that
are equal for the designed high-gain and low-gain controller.

Filter / setting Parameters

WI fI = 0.1 Hz PI = 0.1

WR fR = 6 Hz

Cross-over frequency fco = 0.7 Hz

V1 v1 = 100

b1,1 = 0.15 b1,2 = 1.2

f2,1 = 1.58 Hz f2,2 = 1.58 Hz

b2,1 = 0.05 b2,2 = 0.1

V2 v21 = 5 v22 = 1.4

V3 v3 = 2

W2 w22 = 0.1

algorithm is given by

Gt(s) = diag (1, WI(s), 1)Gol(s)diag (1,WR(s)) (4.32)

with WR(s) and WI(s) the roll-off and integrator filters, respectively. The result-
ing controller K(s) from the DK-iteration procedure, treated in Section 4.4.3,
for this plant Gt, has no integrator and roll-off properties. However, the actual
controller (for the plant Gol) can be calculated as follows:

Kt(s) = WR(s)K(s)diag (WI(s), 1) , (4.33)

which does include the desirable integrator and roll-off properties.

4.5.2 Controller synthesis results

In this section, two different controllers will be synthesized based on the skewed-
µ DK-iteration procedure and the proposed weighting filters from the previous
section. Of course, it is possible to change all weighting filters to obtain a differ-
ent controller; however, the weighting filters in Section 4.5.1 have been chosen
such that the controller objectives can be met and tuning of the parameters
already allows to synthesize different controllers. The two controllers mainly
differ in the allowed control action and will be referred to as a high-gain (hg)
controller and low-gain (lg) controller. The extra allowed control action for the
high-gain controller is used to suppress the bit-mobility even more compared
to the low-gain controller. In Table 4.1 the parameters of the weighting filters
that are equal for both controllers are summarized. The parameters that are
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Table 4.2: Parameter settings for the performance weighting filters that
are not equal for the designed high-gain and low-gain con-
troller.

Parameters

Filter High-gain
controller

Low-gain
controller

V1 f1,1 = 0.53 Hz f1,1 = 0.48 Hz

f1,2 = 0.35 Hz f1,2 = 0.31 Hz

W3 w3 = 1
7 w3 = 1

3.1

changed for the two different controllers are given in Table 4.2. The settings for
the first notch filter in V1(s) are different and the gain w3 is used to allow for
less (or more) control action. By decreasing the gain w3, the allowed magnitude
of the control sensitivities is increased, i.e. allowing for more control action and
therefore higher controller gains. The notch filter in V1(s) is used to allow for
a higher bit-mobility in specific frequency ranges. Note that a so-called skewed
notch filter is used in the weighting filter for both controllers to tune the level
of bit-mobility suppression for frequencies below and above the frequency of the
notch, i.e. allow for less suppression for high frequencies.

Performing the DK-iteration procedure for the drill-string system with the
weighting filters as specified above, results in the controller Kt(s) = [Kωtd(s),
KTpipe(s)

]
, as shown in Figure 4.7 for both the high-gain and the low-gain con-

troller. From this figure, the integral action in the controller, Kωtd(s), that uses
the top drive angular velocity can be clearly recognized. Moreover, the first-
order roll-off is present in both controllers. It can also be seen that the designed
controllers are active in the frequency range of the torsional resonance modes
of the drill-string system (see Figure 4.1), which is not the case for the Soft-
Torque controller shown in the same figure. This industrial controller, which
only uses top drive velocity measurements, is a properly tuned active damping
system (i.e. PI-control of the angular velocity) which aims at damping the first
torsional mode of the drill-string dynamics. A comparison with this controller
by means of a simulation is presented in Section 4.6.

The closed-loop bit-mobility for the different controllers is shown in Figure 4.8
and also compared to the bit-mobility with the industrial controller, indicated
by ST . Moreover, the bounds, specified by the weighting filter V1, for the
controller synthesis are indicated by the dashed lines. It can be seen that the
high-gain controller suppresses the bit-mobility the most, but also with the low-
gain controller a significant decrease of the peak value of the bit-mobility is
achieved compared to the industrial controller. Let us now determine the H∞-
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norm for the closed-loop system Ghgcl (s) with the high-gain controller:
∥∥∥Ghgcl (s)

∥∥∥
∞

= sup
ω

∣∣∣Ghgcl (jω)
∣∣∣ = 0.039. (4.34)

For comparison, for the low-gain controller theH∞-norm is equal to
∥∥∥Glgcl(s)

∥∥∥
∞

=

0.074 and for the industrial controller
∥∥GSTcl (s)

∥∥
∞ = 0.298. Hence, with the

high-gain controller the peak value of the bit-mobility has been decreased with
almost a factor 8. It can also be seen in Figure 4.8 that multiple modes of the
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bit-mobility are damped by the controllers obtained with the proposed controller
design strategy, while with the SoftTorque controller only significant damping
of the first torsional mode is achieved.

According to (4.26), the sector (for ϕ̃) for which stability can now be guar-
anteed is equal to [−γhg, γhg] with γhg = 1/0.039 = 25.46 (for the high-gain
controller). In Figure 4.9, the nonlinearity ϕ̃+ϕeq is shown, including the sector
[−γhg, γhg] (and [−γlg, γlg] for reference). From this figure, it can be seen that
the closed-loop nonlinear system is locally absolutely stable, as long as the bit
angular velocity is larger than (approximately) 22 rpm (because q̃+Hxeq = ωbit).
The region of attraction (in terms of the bit angular velocity) is slightly smaller
for the low-gain controller because γlg < γhg. To conclude, with the designed
controllers, robustness with respect to uncertainty in the bit-rock interaction is
achieved for a substantial variation in the bit velocity.

4.6 Simulation results

In this section, the controllers designed in Section 4.5 are applied to the drill-
string model presented in Section 4.2. First, we present a simulation result
of the drill-string system in closed-loop with an existing industrial controller
(based on [51]). For the simulations, we introduce a so-called startup scenario,
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which is based on practical startup procedures for drilling rigs. Herein, the drill-
string is first accelerated to a low constant rotational velocity, starting from
zero angular velocity for the whole drill-string, with the bit above the formation
(off bottom). Subsequently, the angular velocity and weight-on-bit (WOB) are
gradually increased to the desired operating conditions. The increase in WOB is
modelled as a scaling of the bit-rock interaction torque. Assume that the WOB
is scaled according to the following profile:

α(t) =





0, t0 ≤ t ≤ t1
t−t1
t2−t1 , t1 < t < t2
1, t ≥ t2

(4.35)

with t1 = 50 and t2 = 110 in this case. Then, the bit-rock interaction model is
scaled by using this scaling factor α(t), hence:

Tbit(t) = Sign(ωbit)
(
Tini + α(t)

(
Td − Tini + (Ts − Td) e−

30
Ndπ
|ωbit|

))
(4.36)

where Tini is the amount of resisting torque that is still present at the bit-
rock interface, even when the bit is off bottom (e.g. due to drilling mud and
interactions with the bore hole). For WOB = 0 (off bottom) there is no velocity-
weakening in the TOB. The startup scenario comprises the following steps:

1. Turn on the controller and start with WOB = 0, such that there is no
velocity-weakening effect in the bit-rock interaction model and operate at
relatively low velocity (starting from initial zero velocity for the whole
drill-string) to build up torque in drill-string to overcome static torques
due to drag in the time window 0 < t < 50 s;

2. Slowly increase the reference angular velocity until the desired operating
velocity (ωeq) is reached (in the time window 50 ≤ t < 110 s). At the same
time, slowly increase the WOB and finally obtain the nominal operating
condition in the angular velocity and WOB.

A simulation result of the drill-string model (4.5) in feedback with the indus-
trial controller, shown in Figure 4.7, is shown in Figure 4.10. In the plot in the
middle, the top drive velocity (ωtd) is shown along with the reference velocity
ωtd,ref that starts at a velocity of 20 rpm and is gradually increased to the de-
sired equilibrium velocity, ωeq, of 50 rpm. From the bit response, in the top plot,
we can clearly recognize stick-slip oscillations. The increasing amplitude of the
oscillations in the top drive velocity and top drive torque (bottom plot) demon-
strates that these vibrations arise when the WOB is increased (50 ≤ t < 110 s),
i.e., when due to scaling of the TOB the velocity-weakening effect starts affecting
the dynamics.

Simulation results of the designed controllers in Figure 4.7 are shown in Fig-
ure 4.11. The same startup scenario and initial conditions, as in Figure 4.10,
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Figure 4.10: Simulation result of the drill-string model with an existing
industrial (SoftTorque) controller in the startup scenario.
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are used for these simulations. The simulation results show that the top drive
and bit angular velocity converge to their setpoint and stick-slip vibrations are
avoided. The controllers are able to stabilize the desired setpoint, because damp-
ing of multiple flexibility modes is achieved and robustness with respect to the
bit-rock interaction is taken into account in the design. The difference between
the low-gain and the high-gain is particularly visible in the top drive torque;
the high-gain controller acts more aggressively in response to the initial error,
resulting in more control action (see zoom plot). Consequently, this results in
transient oscillations with a larger amplitude in the angular velocity of the drill-
string, as can be seen in both the top drive velocity and the bit velocity. On
the other hand, the amplitude of the oscillations decays faster for the high-gain
controller compared to the low-gain controller, in particular at the bit, which is a
result of increased bit-mobility suppression obtained by the high-gain controller.

The simulation results of the controllers designed with the skewed-µ DK-
iteration technique show that the desired setpoint of the drill-string system is
stabilized. Moreover, it is shown that the high-gain controller indeed obtains
an increased suppression of the oscillations at the bit compared to the low-gain
controller at the expense of increased control action. The simulation results in
this section are performed under nominal conditions. In Section 4.7, robustness
with respect to different operating velocities, sensor and actuator noise, changing
bit-rock interaction and increased drill-string length are investigated. First, a
comparison study will be performed in the next section. The observer-based
output-feedback controller design methodology (see Chapter 3) and the linear
H∞-based controller design method presented in this chapter are compared with
each other.

4.6.1 Comparison with the observer-based output-feedback
controller design strategy

The controller objectives for the H∞-based controller are summarized in Sec-
tion 4.3.1. The observer-based controller design strategy is also designed to
(locally) stabilize the constant rotational velocity of drill-string systems with
multiple dominant torsional flexibility modes, while ensuring robustness with
respect to uncertainty in the bit-rock interaction, using surface measurements
only. It has been shown that both controllers are able to stabilize the desired
angular velocity of the drill-string and that stick-slip oscillations have been elim-
inated. However, the latter controller design methodology does not guarantee
the satisfaction of closed-loop performance specifications on for example mea-
surement noise sensitivity and the limitation of control action. The performance
of this nonlinear controller in terms of these specifications can only be analyzed
a posteriori (i.e. after designing the controller). Moreover, the H∞ controller de-
sign approach has some additional advantages. First, specific design targets such
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Figure 4.11: Simulation result of the drill-string model with the designed
output-feedback controllers in the startup scenario.
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as the inclusion of integral action and high-frequency roll-off can be achieved by
absorbing specific filters in the controller design. Second, the pipe torque mea-
surement can be easily adopted as additional measurement in order to increase
the robustness of the controller, i.e. more information is available for feedback
due to the use of an additional sensor. This can be beneficial because the third
torsional flexibility mode is almost unobservable in the top drive angular veloc-
ity. Third, the observer-based controller approach needs a model of the nonlinear
bit-rock interaction in the observer. It has been shown that the observer-based
controller is robust with respect to changes in the bit-rock interaction; the H∞-
based controller does not need a model at all. Last, the H∞ controller can
be switched on immediately, while in the observer-based approach the observer
needs time to estimate the states of the system and in that initial period another
controller (that does not use the estimated states) is necessary.

A simulation result of the 18-DOF drill-string model in closed-loop with the
high-gain H∞ controller and an observer-based output-feedback controller as
designed in Chapter 3 is shown in Figure 4.12. Both simulations are performed
under the same operating conditions in the startup scenario and with equal initial
conditions (i.e. zero angular velocity of the entire drill-string). For readability of
the plots, the state estimates of the observer in the observer-based controller are
not shown. A particular difference between the two controllers, clearly visible in
Figure 4.12, is the fact that the H∞ controller is switched on immediately, while
in the simulation with the observer-based controller an industrial PI-controller
is used in the first 50 seconds. Therefore, the H∞ controller is able to damp
the transient oscillations in the bit angular velocity while these oscillations are
not as well damped with the PI-controller. This can also be seen in the top
drive torque, which clearly acts at higher frequencies for the H∞ controller. At
t = 50 s, when the observer-based output-feedback controller is switched on,
a step in the control action is visible (see zoom plot) due to the switch in the
controller. Also in the control action of the H∞ controller some oscillations are
present due to the fact that at the same time the velocity and WOB start to
increase.

4.7 Robustness of the closed-loop system

As already stated in the controller objectives in Section 4.3.1, robustness of the
closed-loop system is an important objective of the proposed controller design
strategy. Several aspects regarding the robustness of the closed-loop drill-string
system are investigated in this section. In Section 4.7.1, robustness with respect
to different operating velocities is investigated and, in Section 4.7.2, robustness
with respect to uncertainty in the bit-rock interaction is investigated. Next,
in Section 4.7.3 the performance of the drill-string system in the presence of
sensor and actuator noise is investigated and, in Section 4.7.4, the influence of
the increasing length of the drill-string while drilling is examined.
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Figure 4.12: Simulation result of the drill-string model with the de-
signed high-gain output-feedback controller compared with
the observer-based output-feedback controller in the startup
scenario.



4.7 Robustness of the closed-loop system 97

Note that the simulation results in this section mainly involve results of the
drill-string system in closed-loop with the high-gain H∞-controller. The same
simulations have also been performed with the low-gain controller and it has
been observed that the results are very similar. Only in case there is a significant
difference between the two controllers’ performance, results of both controllers
are discussed.

4.7.1 Different operating velocity

The controller design methodology in Section 4.4 is applied to the system in per-
turbation coordinates and therefore designed to stabilize the desired equilibrium
velocity ωeq. However, in practice it is not desirable to have a controller that is
only applicable at a single angular velocity. Therefore, the operating envelope
in terms of velocity for the designed controller is investigated. In Figure 4.9
the lower limit of the bit-angular velocity based on the sector bounds of the
nonlinear stability analysis is indicated. However, this lower limit for the bit ve-
locity does not give full information about the region of attraction for the other
states of the system, e.g. a lower limit for the angular velocity of the entire drill-
string. In this section, we investigate the closed-loop poles of Gcl for different
equilibrium velocities ωeq, that is the pole locations of the (transformed) linear
drill-string system in closed-loop with the designed H∞-controllers. Due to the
destabilizing effect of the velocity-weakening effect in the bit-rock interaction,
the (linear) closed-loop system will become unstable below a certain equilib-
rium velocity. This velocity gives a lower bound of the angular velocity that
can be stabilized with the designed controller. In Figure 4.13, the lower limit of
the angular velocity for the low-gain and high-gain controller is given (ωmin,lg
and ωmin,hg, respectively) and compared with the lower limit for the industrial
controller (ωmin,ST ). The numerical values of these limits are summarized in Ta-
ble 4.3. As can be seen, the lower limit of the angular velocity that can still be
stabilized is decreased from approximately 40 rpm for the industrial controller
to 33 and 30 rpm for the low-gain and high-gain H∞ controller, respectively.
Moreover, it shows that the increased bit-mobility suppression of the high-gain
controller also results in a lower angular velocity for the entire drill-string that
can be stabilized. It has to be noted that these values are determined based
on the location of the closed-loop poles of the (transformed) linear drill-string
system and therefore only give information about the local asymptotic stability
of the desired equilibrium point. Due to this reason the angular velocity that
can be stabilized in practice is probably higher. The latter fact is also indicated
by the simulations using the industrial controller (see Figure 4.10) that show
that this controller is unable to stabilize the desired velocity of 50 rpm under
the imposed operating conditions while the theoretical lower limit concerning
local asymptotic stability is approximately 40 rpm.

To investigate the applicability of the H∞-controllers at lower angular ve-
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Figure 4.13: Lower limit of the desired angular velocity that can be (lo-
cally) stabilized for different controllers.

Table 4.3: Lower limit of the desired angular velocity that can be stabi-
lized for different controller based on the closed-loop poles of
the drill-string system.

Controller Lower limit ωeq [rpm]

High-gain 30.3

Low-gain 33.3

SoftTorque 40.0

locities, simulations with the startup scenario and a desired angular velocity of
35 rpm have been performed. The results are shown in Figure 4.14, the first
50 seconds are equal to the simulation results shown in Figure 4.11 as the initial
conditions and starting velocity (20 rpm) are the same. In the time period from
50 to 110 seconds the WOB and angular velocity are again increased, but in
this case with a desired end velocity of 35 rpm. Both the low-gain and high-gain
controller are able to stabilize the desired setpoint of 35 rpm (under the imposed
operating conditions), however the response of the system shows more oscilla-
tory behavior compared to the simulations in Figure 4.11. For the low-gain
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controller these oscillations result from not fully damped transient oscillations
in the first 50 seconds, which grow when the operating conditions change (for
50 ≤ t < 110s). However, as can be seen in the top drive torque the controller
acts on these vibrations and eventually the vibrations are damped. The oscilla-
tions are also caused by the changing operating conditions at t = 50. Especially,
the second-order reference profile for the angular velocity, and therefore a step
in acceleration, cause some transient oscillations. This can particularly be seen
in the response of the drill-string system in closed-loop with the high-gain con-
troller. The same simulation as shown in Figure 4.14, is shown in Figure 4.15 for
the high-gain controller and focusing on the time period from 40 to 150 seconds.
The transient oscillations are clearly visible in the response after t = 50. In
the same figure, the result of another simulation is shown (indicated by the red
lines), where instead of a second-order reference profile, a third-order reference
profile is used for the change in velocity and WOB. Up to t = 50 the response of
the system is exactly the same, but in the period between 50 and 110 seconds the
operating conditions are changed in a much smoother way using the third-order
reference signal compared to the second-order reference signal. As a result, the
transient oscillations have disappeared and the controller stabilizes the desired
setpoint of the drill-string system. This simulation shows that the design of a
suitable reference signal, in addition to the controller design, can improve the
performance of the closed-loop drill-string system. Another possibility to, poten-
tially even further, improve the performance is the design of additional (mass)
feedforward terms. By the design of feedforward the control action is also based
on the a priori known reference signal, instead of feedback (i.e. measurements)
only. The use of additional feedforward is not investigated here, but serves as a
recommendation for cases where the performance of the system is not sufficient.

To summarize, the analysis in this section shows that with the controllers
designed using the controller design methodology proposed in Section 4.4 a sig-
nificant increase in the operating envelope in terms of angular velocity can be
achieved.

4.7.2 Changing bit-rock interaction model

Robustness with respect to uncertainty in the bit-rock interaction is an impor-
tant property of the closed-loop system from a practical point of view, first of
all because it is difficult to obtain an accurate model of the bit-rock interaction.
Another reason is the fact that the bit-rock interaction is prone to changes during
the drilling process, for example, due to bit wear and changes in the formation.
Therefore, one of the controller objectives (Section 4.3.1) is to obtain robustness
with respect to uncertainty in the bit-rock interaction. In Figure 4.9, the sector
condition on the bit-rock interaction has already been visualized. This sector
conditions states that the desired equilibrium point is (locally) absolutely stable
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Figure 4.14: Simulation result of the drill-string model in the startup sce-
nario with the designed output-feedback controllers and a
desired angular velocity of 35 rpm.

for any bit-rock interaction within the sector, i.e. the grey area in Figure 4.9
for the high-gain controller. In this section, we present a simulation result of
the drill-string system in closed-loop with the designed high-gain controller to
illustrate the robustness with respect to changes in the bit-rock interaction.

Recall the nominal parameter values for the bit-rock interaction model, that
is Ts = 7700 Nm, Td = 1700 Nm and Nd = 5 rpm, which are used for the con-
troller synthesis. In this simulation study, both the torque level and the decrease
rate of the bit-rock interaction is changed. First, the nominal level of the bit-rock
interaction model is increased. In other words, both the static torque Ts and
the dynamic torque Td are increased. Also the decrease rate (related to Nd) is
adapted, by increasing Nd. This leads to a less severe velocity-weakening effect
at low velocities and therefore more negative damping at higher velocities. The
parameters for the adapted bit-rock interaction model are given by T cs = Ts+200,
T cd = Td+200 and N c

d = Nd+1. The value of Nd is chosen such that the bit-rock
interaction still locally satisfies the sector condition. The simulation is started
with the same settings as the simulation results shown before, subsequently the
WOB and angular velocity are changed according to the startup scenario to ob-
tain the desired angular velocity of 50 rpm and the nominal bit-rock interaction
model. At t = 130 s, the bit-rock interaction model is suddenly changed to the
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Figure 4.15: Simulation result of the drill-string model in the startup sce-
nario with the high-gain controller and a desired angular ve-
locity of 35 rpm, comparison between second and third-order
reference signal.

adapted parameter settings. As can be seen from the response in Figure 4.16 the
change in bit-rock interaction causes some oscillations in the states of the drill-
string system. However, the oscillations are damped and the velocity of both
the top drive and the bit converge to the desired angular velocity. In the zoom
plot of the top drive torque it can be seen that the top drive torque converges to
a new equilibrium value which is slightly higher than the original equilibrium.
A closer look at the new equilibrium value shows that it exactly compensates
for the added 200 Nm in torque of the adapted bit-rock interaction model. This
illustrates the effect of the integral action in the controller; without integral ac-
tion the controller does not compensate for a steady-state offset in the controlled
states. However, with the designed controller, integral action is included in the
top drive velocity part (Kωtd) of the controller such that the desired velocity is
stabilized, resulting in a new equilibrium value for the top drive torque.

4.7.3 Sensor and actuator noise disturbances

Another aspect that the drilling system has to deal with in practice is the pres-
ence of sensor and actuator noise. In this section, the robustness with respect to
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Figure 4.16: Simulation result of the drill-string model in the startup sce-
nario with the high-gain controller and a change in the bit-
rock interaction at t = 130 s.
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noise is investigated and both sensor and actuator noise are taken into account.
The noise disturbances are modelled as additive white noise signals. That is,
the actual top drive torque Ttd is given by Ttd = ut + dTtd with ut the output
from the controller and dTtd the disturbance. The measurement ym is the actual
state plus sensor noise, i.e. ym = y + n. The actuator noise on the top drive
torque has a standard deviation of approximately 560 Nm, i.e. 1.5% of the nom-
inal value, this means that the top drive torque varies between approximately
37.2 kNm and 41.1 kNm (nominal torque in equilibrium is uc = 39.2 kNm).
Due to sensor noise both the top drive velocity and pipe torque measurement
are perturbed. The standard deviation of the sensor noise is also chosen to be
approximately 1.5% of the nominal value, i.e. approximately 0.7 rpm for the top
drive velocity and approximately 520 Nm for the pipe torque. The measured top
drive angular velocity varies between 47.5 rpm and 52.5 rpm and the pipe torque
measurement between approximately 38.0 kNm and 34.4 kNm (i.e. peak-to-peak
the disturbances are approximately 10% of the nominal value).

A simulation of the system including measurement noise is shown in Fig-
ure 4.17. In this figure, the actual top drive velocity ωtd, pipe torque Tpipe and
control action ut are shown. Compared to the previous simulation results, the
response of the system is similar. A closer study of the states of the system of
course shows some more oscillations caused by sensor and actuator noise. Due to
these disturbances, the states of the system will always show some oscillations,
however compared to the noise levels of 5% in amplitude the effect on the states
is limited. For example the actual top drive velocity only varies between approx-
imately 49.7 and 50.3 rpm. This relatively low measurement noise sensitivity
is mainly obtained by the required roll-off filter in the controller. This roll-off
filter reduces the effect of (high-frequency) disturbances and the fact that such
filter can be included in the controller is an important advantage of the proposed
controller design methodology. Most importantly, the simulation result shows
that the controller is able to stabilize the desired velocity and mitigate stick-slip
vibrations even in the presence of sensor and actuator noise.

4.7.4 Changing length of the drill-string

During the drilling process the drill-string is gradually lengthened as the well
gets deeper. Current controllers need to be re-tuned during the drilling operation
and this re-tuning is prone to errors, resulting in wrong controller settings and
possibly failing of the stick-slip mitigation due to tuning errors. Additionally,
the re-tuning process is time consuming and requires qualified staff to be present
at the rig. Therefore, the amount of tuning occurrences should be minimized.
In other words, the controller should be robust with respect to the increasing
length of the drill-string. In this section, the plant model (4.5) is changed such
that the dynamics of the plant correspond to a drill-string of different length.

In practice, to add a new pipe section, the drill-string is stopped and a stand
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Figure 4.17: Simulation result of the drill-string model in the startup sce-
nario in closed-loop with the high-gain controller, disturbed
with sensor and actuator noise, the amplitude of the noise
signals is approximately 5% of the nominal value of the dis-
turbed signal.
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of one or multiple drill pipes is connected to the drill-string. In this analysis
it is assumed that a new stand of 3 drill pipes is added to the drill-string (i.e.
27 m of length is added to the drill-string). In practical situations, the current
industrial controller needs to be re-tuned every stand, and sometimes even after
one or two added drill pipes. The pole locations of the closed-loop system,
consisting of a changed plant model and a controller designed for the nominal
drill-string, are investigated for different controllers. The results of this analysis
are shown in Figure 4.18 for both the low-gain and the high-gain H∞-controller
and compared with the industrial controller. The real value of the right-most
pole is shown as function of changing length compared to the nominal model.
The right-most pole of the nominal model (indicated by 0) lies in the LHP for all
three controllers. When the length of the drill-string is decreased the right-most
pole moves further into the LHP, while for an increase of length the right-most
pole moves towards the imaginary axis. The same holds for the closed loop with
the industrial controller. The closed-loop system controlled with the low-gain
controller even has an unstable equilibrium in case 15 or more pipe sections
are added to the drill-string. This follows from the fact that in these cases the
right-most pole moves into the RHP, as can be seen in Figure 4.18.

As mentioned before, the location of the eigenvalue is not the only important
factor, as local asymptotic stability does not imply that no stick-slip vibrations
occur. Clearly, SoftTorque locally asymptotically stabilizes the system, but stick-
slip oscillations still occur. Therefore, the H∞-norm of the bit-mobility (Gcl)
is also shown. The H∞-norm of the closed-loop bit-mobility with the H∞-
controllers is approximately a factor 4 to 8 lower than the H∞-norm of Gcl with
the industrial controller (see also Figure 4.8 for the nominal case). This indicates
that the H∞-controllers have significantly more robustness with respect to bit-
rock interaction variations than the industrial controller and are therefore able
to stabilize the desired setpoint (and avoid stick-slip vibrations) as shown in the
previous simulations, while the industrial controller is unable to do so.

Changing the length of the drill-string with a few pipe sections does not have
a large effect on the pole locations and H∞-norm as can be seen in Figure 4.18.
However, when 15 or more pipe sections are added to the drill-string the system
controlled with the low-gain controller has an unstable equilibrium point, i.e.
the right-most pole lies in the RHP. Simulation results indeed show that the
controller is unable to stabilize the desired setpoint in these cases. For a drill-
string system with 15 or more pipe sections added to the drill-string the H∞-
norm of the system controlled with the low-gain controller seems to vary, this
is caused by the fact that peak values at other frequencies become dominant in
the bit-mobility. To be more precise, generally speaking the third mode (around
f3 = 0.53 Hz) is dominant in the bit-mobility, as can also be seen in Figure 4.8
for the nominal model. However, for the case with 15× 9 m drill pipe added to
the drill-string a peak around the fifth eigenmode (at approximately 1.03 Hz) is
dominant and when 21×9 m drill pipe is added to the drill-string a peak around
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Figure 4.18: Location of the right-most pole of the closed-loop system
and H∞-norm of the bit-mobility as function of added pipe
length to the drill-string.

the fourth eigenmode (at approximately 0.74 Hz) is present. This shows that due
to the changing dynamics of the drill-string caused by the changing length of the
drill-string some peaks in the bit-mobility arise due to a mismatch in frequencies
at which the controller tries to damp certain modes. In these cases it is even
possible that certain modes are amplified instead of damped, resulting in higher
peaks in the bit-mobility at these frequencies compared to the open-loop case.

For the high-gain controller, on the other hand, the right-most pole is still
in the LHP and the H∞-norm is only slightly increased when the length of the
drill-string is increased. A simulation result of a plant model that is 189 m
(21× 9 m) longer than the nominal model (which has a total length of 6249 m)
and controlled with the high-gain H∞-controller, is shown in Figure 4.19. This
simulation confirms that the desired equilibrium is indeed stable with this con-
troller. This means that this controller is able to stabilize the desired setpoint
of drill-string systems for a large variation in length of the drill-string. It can
be concluded that a significant increase in robustness with respect to increasing
drill-string length is obtained compared to the industrial controller.
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Figure 4.19: Simulation result of the drill-string model in the startup sce-
nario with the high-gain controller and a drill-string model
with increased length (21× 9 m added drill pipe).
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4.8 Summary

In this chapter, a synthesis strategy for controllers aiming at the mitigation of
torsional stick-slip oscillations in drilling systems is proposed. The controller de-
sign is based on skewed-µ DK-iteration, and offers several benefits over existing
controllers. First, the designed controller is applicable to a multi-modal drill-
string model while guaranteeing (local) stability of the desired operating point.
Second, the controller is optimized to have robustness with respect to uncer-
tainty in the bit-rock interaction. Third, performance specifications regarding
measurement noise sensitivity and actuator limitation are integrated in the con-
troller design. Fourth, the controller uses only surface measurements, which is
a requirement from practical point of view. Simulation results of the proposed
controller applied to the 18-DOF drill-string model show that the stick-slip os-
cillations are eliminated, while a simulation of an existing industrial controller,
under the same conditions, shows stick-slip vibrations. Stability of the nonlinear
closed-loop system is also investigated and conditions on the bit-rock interac-
tion, in terms of a sector bound, for which the desired equilibrium is locally
asymptotically stable, have been derived.

From a practical point of view, several robustness aspects have been investi-
gated. An important property of the proposed controller design strategy is that
the controllers can be tuned based on both robustness and performance specifi-
cations. The robustness of the designed controllers is investigated by means of
several simulation studies. A significant increase in the operating envelope of the
drill-string system is achieved, both in terms of angular velocity and increasing
length of the drill-string. Moreover, the proposed controller can effectively deal
with sensor and actuator noise due to the fact that a roll-off filter can be easily
incorporated in the controller. Another aspect that is investigated is robustness
with respect to uncertainty in the bit-rock interaction. Simulation results have
shown that a sudden change in the bit-rock interaction can be dealt with and the
integral action in the controller enables to compensate for a steady-state offset
in the desired angular velocity.

Summarizing, it can be concluded that the proposed controller can effectively
deal with practical drilling conditions and it outperforms currently used indus-
trial controllers in terms of the operating envelope for which stick-slip oscillations
can be eliminated.



Chapter 5

Design of an experimental
drill-string setup

5.1 Introduction

In this chapter, the design of an experimental drill-string system is presented.
This system is designed to represent the dominant dynamics of an oil-field drill-
string system that exhibits torsional vibrations while drilling at certain depths.
With the development and use of such an experimental drill-string system an
improved understanding on the dynamical phenomena that occur while drilling
can be obtained. Moreover, this system is used as an experimental benchmark
system for the implementation of the controllers designed in Chapters 3 and 4.

The motivation for the development of an experimental drill-string system is
twofold. First, such an experimental drilling system can help in understanding
the dynamical phenomena that play a role in the onset of torsional stick-slip
vibrations. Second and most importantly, the experimental setup can be used
for the experimental validation of the proposed controller design strategies and
serve as an intermediate step towards field implementation of the controllers on
a real rig. The latter is often not directly possible due to the high costs involved
in testing on a real rig and the uncertainty and disturbances present in real-life
drilling. Moreover, using the experimental setup, controllers can be extensively
tested in different scenarios to validate the robustness of the controller design
strategies, before implementing the controller on a real rig.

Because of the high costs involved in testing on a real rig, experimental se-
tups to represent the drilling dynamics used for multiple purposes can be found
in literature and some examples are mentioned here (see [85] for a more com-
prehensive overview). In [77], an experimental 2-DOF drill-string system is used



110 Chapter 5. Design of an experimental drill-string setup

for the analysis of friction-induced stick-slip limit cycles. The same setup is
used in [19] for experimental validation of an observer-based output-feedback
controller. In [56], an experimental setup is developed that can emulate vari-
ous excitation mechanisms of the drill-string, including stick-slip, well-borehole
contact, and drilling fluid interaction. The aforementioned test rigs both use
brake systems to implement bit-rock interaction laws. A different approach is
taken in [60], in which an experimental setup to explore stick-slip phenomena
is used that involves real cutting using a bit. In [119], an experimental setup
is used to investigate whirling effects in drilling systems and it involves both
torsional and lateral dynamics. Another example of the experimental validation
of a controller design approach for torsional vibrations in drilling systems can
be found in [72]. Also for the testing of down-hole tools experimental setups are
used as a stepping stone towards implementation of the technique. For exam-
ple, experimental results of the Resonance Enhanced Drilling (RED) technology
are presented in [124] and in [91] an experimental setup to investigate the Anti
Stick-slip Tool (AST) is shown.

The need for a new setup stems from the fact that the controllers proposed in
this thesis focus on the robustness with respect to multiple dominant torsional
flexibility modes in the drill-string dynamics. To investigate this robustness it
is important that the experimental setup represents such a drilling system with
multiple dominant flexibility modes (in contrast to e.g. [77, 119] where setups
with a single flexibility mode are considered). Moreover, existing setups often use
mechanical brakes (see e.g. [77]) to model the bit-rock interaction. With these
systems it is difficult to implement different bit-rock interaction models. In this
work, a motor is used to generate the resisting torque at the bit-rock interface
such that different types of bit-rock interaction models can be implemented.

The outline of this chapter is as follows. In Section 5.2, the model of the ex-
perimental drill-string setup is discussed and the steps that are taken to develop
this model based on a model of a realistic drilling system. Next, in Section 5.3
the design of the setup is presented and the different components are discussed
in more detail. Finally, a summary is given in Section 5.4.

5.2 Modelling of the dynamics of the drill-string
setup

A finite-element method (FEM) model of a realistic drilling system is used as
basis for the design of the experimental drill-string setup. The model is based on
an offshore jack-up drilling rig to reach reservoir sections at depths of >6000 m.
The rig is equipped with an AC top drive and fitted with a modern SoftTorque
system [64]. When drilling those deep wells, stick-slip vibrations have been
observed in the field for this drilling system. This motivates the use of this drill-
string model as basis for the development of the lab-scale drill-string setup. A
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Figure 5.1: Overview of the different steps in developing a model to be
used as a basis for the design of the experimental setup.

detailed description of the FEM model is given in Section 2.3. Here, the focus is
on the steps that are taken to develop a model of the experimental setup based
on this 18-DOF FEM model. These steps are summarized in Figure 5.1 and are
discussed in more detail in the following sections. In Section 5.2.1, the model
reduction strategy that is used to obtain a reduced-order drill-string model is
discussed. Next, the model of the experimental setup is explained in more detail
in Section 5.2.2 and the identification approach to obtain the parameters for
this model based on the reduced-order model is given in Section 5.2.3. Since it
is impossible to scale down an oil-field drill-string to a lab-scale setup that still
exhibits the main (torsional) dynamics we aim to study, we propose a model
with 4 rotating discs, coupled with (steel) strings as shown in Figure 5.2. It is
important to mention that the proposed model of the experimental setup has a
specific structure due to the mechanical elements (i.e. inertias and springs) that
are used in the setup resulting in a lumped parameter model, while on the other
hand the reduced-order drill-string model does not have such specific structure.
The identified parameters of the obtained model are still in the same order of



112 Chapter 5. Design of an experimental drill-string setup

Inertia J̄4

θ̄s,4

Inertia J̄3

Inertia J̄2

θ̄s,2

Inertia J̄1

θ̄s,1

Steel string

Steel string

Steel string

Drive part

Tbit

θ̄s,3

Figure 5.2: Schematic representation of a model with four discs.

magnitude as the original drill-string model (e.g. inertia and stiffness properties
of the system as a whole are still in the same order of magnitude and are hence
not (yet) scaled). As a consequence, the representative torsional velocity and
torque levels of the setup match those of a real drill-string system. Therefore,
as a next step the parameters are scaled to obtain suitable torque levels and
velocities for a lab-scale drill-string setup, but also to obtain feasible inertias
and stiffnesses for the lab-scale system. This scaling procedure is discussed in
Section 5.2.4.
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5.2.1 Reduced-order model

The FEM model presented in Section 2.3 has 18 degrees of freedom. For the
design of the setup we rely on a reduced-order model. The purpose of this
reduced-order model is to approximate the higher-order FEM model with a re-
duced number of states, while still preserving the key dynamic system properties.
As mentioned before, models with multiple flexibility modes (i.e. with more than
2-DOF) are considered, because field observations have revealed that also higher
flexibility modes of the drill-string play a role in the onset of stick-slip vibra-
tions [82]. As mentioned in Section 2.3.1, the first three resonance modes, with
resonance frequencies at f1 ≈ 0.15, f2 ≈ 0.38 and f3 ≈ 0.53 Hz, are dominant
in the drill-string dynamics (see Figures 2.8-2.9). Therefore, a drill-string model
with at least 4 degrees of freedom is considered to enable accurately capturing
those first three modes and the rigid body mode by the reduced-order model.

For the design of the experimental setup we would like to accurately approxi-
mate the torsional flexibility modes of the drill-string system associated with the
lowest resonance frequencies. Therefore, an eigenmode based reduction strategy
is used, also known as the mode displacement method (see e.g. [36]). Recall the
equation of motion for the 18-DOF drill-string system (2.1), that is

Mθ̈ +Dθ̇ +Ktθd = SwTw(θ̇) + SbTbit(θ̇1) + StTtd. (5.1)

Now let us consider the undamped (and unforced) drill-string system and in

addition consider the stiffness in terms of the absolute positions θ =
[
θ1 · · · θm

]>
instead of the difference in angular position θd, hence

Mθ̈ +Kθ = 0. (5.2)

Then, the mode displacement method is based on the free vibration modes of
these structural dynamics. This leads to the following generalized eigenvalue
problem: [

K − λ2
iM
]
vi = 0, (5.3)

where vi is the mode shape vector corresponding to the eigenfrequency λi, with
i ∈ [1, . . . ,m]. The resulting eigenfrequencies are grouped in ascending order,
i.e. λ1 ≤ λ2 ≤ · · · ≤ λm and the corresponding eigenmodes v1, v2, . . . , vm are
collected in the square (m×m) modal matrix

V =
[
v1 v2 · · · vm

]
. (5.4)

Using this matrix, we employ the following coordinate transformation to modal
coordinates η:

θ = V η. (5.5)

The general idea of the expansion procedure is to keep the first mr < m eigenvec-
tors, that correspond to the lowest eigenfrequencies in the reduced-order model.
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Hereto, consider the following transformation matrix

T =
[
v1 v2 · · · vmr

]
. (5.6)

Using this transformation matrix, (5.5) can be rewritten as

θ =
[
T U

] [θr
η2

]
= Tθr + Uη2 (5.7)

where U contains the truncated eigenmodes, that is the eigencolumns mr + 1 to
m and η2 contains the states that correspond to these modes; the coordinates
preserved in the reduced-order model are defined by θr. Using (5.1) and (5.7)
and projecting the resulting equations of motion on the expansion basis T results
in the following reduced-order dynamics:

Mr θ̈r +Dr θ̇r +Krθr = T>SwTw( ˙̌θ) + T>SbTbit(
˙̌θ1) + T>StTtd (5.8)

with Mr = T>MT ∈ Rmr×mr , Dr = T>DT ∈ Rmr×mr , Kr = T>KT ∈
Rmr×mr and θ̌ := Tθr ∈ Rm is the estimated (full-order) state based on the
reduced-order estimates. We can not expect θ̌ to be equal to the original states
θ, since in the reduction step a part of the original dynamics (related to η2) is
omitted.

In this work, the case withmr = 4 is considered, that is we take the rigid body
mode and three torsional flexibility modes into account. The relevant frequency
response functions of the (linear) drill-string dynamics are shown in Figures 5.3-
5.5. These frequency response functions describe the (linear) drill-string dynam-
ics from the relevant inputs (top drive torque and bit-rock interaction torque)
to the angular velocity outputs at the top drive and bit, i.e. respectively ωtd and
ωbit. As can be seen, the first three eigenmodes are indeed accurately matched
by the reduced-order model.

5.2.2 Dynamical model of the experimental setup

In this section, the model that is used for the design of the experimental setup,
as shown in Figure 5.2, is discussed in more detail. For the model, we will not
restrict ourselves to connections between adjacent discs only, but take potential
connections between all the discs into account. This is schematically shown in
Figure 5.6, where kij and dij (i, j = 1, . . . , 4) are the stiffness and damping

factors between the discs, respectively. The coordinates θ̄s =
[
θ̄s,1 · · · θ̄s,4

]>
represent the angular displacements of the discs. The equations of motion of the
system are given by:

M̄s
¨̄θs + D̄s

˙̄θs + K̄sθ̄s = SwsTws(
˙̄θs) + SbsTbit(

˙̄θs,1) + StsTtd (5.9)
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Figure 5.3: Frequency response function of the 18-DOF model and
the reduced-order model (based on the mode displacement
method) from input torque Ttd to bit velocity ωbit.
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Figure 5.4: Frequency response function of the 18-DOF model and
the reduced-order model (based on the mode displacement
method) from input torque Ttd to top drive velocity ωtd.
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Figure 5.5: Frequency response function of the 18-DOF model and
the reduced-order model (based on the mode displacement
method) from bit torque Tbit to bit velocity ωbit, i.e. bit-
mobility.

with

M̄s =




J̄1 0 0 0
0 J̄2 0 0
0 0 J̄3 0
0 0 0 J̄4


 (5.10)

D̄s =




d̄12 + d̄13 + d̄14 −d̄12 −d̄13 −d̄14

−d̄12 d̄12 + d̄23 + d̄24 −d̄23 −d̄24

−d̄13 −d̄23 d̄13 + d̄23 + d̄34 −d̄34

−d̄14 −d̄24 −d̄34 d̄14 + d̄24 + d̄34


 (5.11)

K̄s =




k̄12 + k̄13 + k̄14 −k̄12 −k̄13 −k̄14

−k̄12 k̄12 + k̄23 + k̄24 −k̄23 −k̄24

−k̄13 −k̄23 k̄13 + k̄23 + k̄34 −k̄34

−k̄14 −k̄24 −k̄34 k̄14 + k̄24 + k̄34


 (5.12)

Sws =




0 0 0
1 0 0
0 1 0
0 0 1


 , Sbs =




1
0
0
0


 , Sts =




0
0
0
1


 (5.13)
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J̄4

J̄3

J̄2

J̄1

k̄34, d̄34

k̄23, d̄23

k̄12, d̄12

k̄13, d̄13

k̄24, d̄24

k̄14, d̄14

Ttd

Tbit

Figure 5.6: Schematic model showing all the connections between the
discs.

and the resistive torques at discs 2,3 and 4 to model the borehole drill-string
interaction are given by Tws.

5.2.3 Parameter identification

The next step is to determine the parameters of the 4-DOF model of the ex-
perimental setup based on the reduced-order model presented in Section 5.2.1.
First, the inertias of the 4 discs are determined. The total inertia of the 4-disc
setup is chosen to be equal to the total inertia of the original 18-DOF model. In
addition, we require the inertia of the upper disc (J̄4) to be equal to the inertia of
the top drive, such that the upper disc actually represents the top drive. Doing
so, the torque in the string below disc 4 represents the pipe torque that is used as
measurement in the linear robust controller approach (Chapter 4). The inertia
of the bottom disc (J̄1) is determined based on the “high”-frequency behavior
(i.e. above the eigenfrequencies) of the reduced-order model. In other words, the
inertia of the bottom disc is chosen such that the bit-mobility of the setup model
matches the bit-mobility of the reduced-order model at high frequencies. The
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remaining part of the total inertia is equally distributed over the two remain-
ing discs. The remaining parameters, i.e. damping and stiffness parameters, are
determined using an optimization approach. The objective of the optimization
procedure is to find the model parameters such that the difference in the com-
plex plane between the frequency response function of the reduced-order model
and the model of the setup is minimized over all frequencies in the frequency
range of interest. Hence, we seek to solve the following optimization problem:

min
p∈[p, p]

J(p), (5.14)

where p :=
[
k̄12 k̄23 k̄34 k̄13 k̄14 k̄24 d̄12 d̄23 d̄34 d̄13 d̄14 d̄24

]
are the parame-

ters of the setup to be determined, p and p a lower and upper bound for the
parameters and the objective function J(p) is given by

J(p) =
∑

ωl

w(jω)
(∣∣W (jω)HTtdωbit

r (jω)−W (jω)HTtdωbit
s (jω)

∣∣2
)

(5.15)

with HTtdωbit
r and HTtdωbit

s the frequency response functions from top drive
torque input to bit velocity output of the reduced-order model and the setup
model, respectively. The frequency response function from top drive torque in-
put to bit velocity output is chosen for the parameter identification because it
captures the relevant dynamics of the drilling system that should be represented
in the setup. Note that HTtdωbit

s depends on the parameters p. The frequency
grid ωl is a discrete grid of frequencies between 0.05 and 6 Hz, because that
is the relevant frequency range of the reduced-order drill-string dynamics (see
Figure 5.3). The frequency-dependent weighting filter W (jω) is chosen to be

W (jω) = Jtotjω, (5.16)

to compensate for the negative slope of the frequency response function from
top drive torque input to bit velocity output. The (scalar) multiplication factor
w(jω) in (5.15) is used to give extra weighting in specific frequency ranges.
This multiplication factor is equal to 1.5 for 0.14 < f < 0.165 (i.e. around the
first resonance frequency), equal to 2 for 0.5 < f < 0.57 (i.e. around the third
resonance frequency) and equal to 1 for all other frequencies.

The results of the fitting procedure are shown in Figures 5.7-5.9. In these
figures, the same frequency response functions are shown as in Figures 5.3-5.5,
however, now with the addition of the frequency response functions associated
with the setup model with the identified parameters. Note that these parameters
are still in the same order of magnitude as for the original drill-string model.
For example, the inertia of the upper disc is equal to the inertia of a real top
drive (i.e. approximately 1800 kgm2) and a driving torque at the top drive is
typically in the order of 40 kNm. These settings and especially the high torque
levels are infeasible for a lab-scale setup. Therefore, scaling of the parameters
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in order to obtain feasible dimensions for the lab-scale setup is discussed in
Section 5.2.4. It turned out that it is not possible to fit the reduced-order model
of the original drill-string with model of the setup exactly. This is mainly caused
by the fact that in the finite-element model (and therefore also in the reduced-
order model) the mass properties of the drill-string are distributed along the
drill-string, whereas the model of the setup is based on a lumped mass approach
(i.e. multiple discs). This is particularly visible in Figure 5.7: due to the lumped
inertias of the setup model the slope of the magnitude of the FRF decreases
with 2 (on a loglog-scale) after each resonance peak and the phase decreases
with 180 degree (due to the 2 poles associated with the resonance). However,
the FRF’s of the 18-DOF and reduced-order model do not show this behavior,
this is caused by zeros of these models that are in the right-half-plane of the
complex plane (i.e. non-minimum phase). Nevertheless, a satisfactory match of
the dominant resonances is achieved and, moreover, simulation results of the
setup model (see Figure 5.10) confirm that the response of the setup model
is in good correspondence to the response of the reduced-order model and the
original 18-DOF FEM model. In Figure 5.10, the response of the 18-DOF drill-
string model (as already shown in Figure 2.14) is compared with the response
of the 4-DOF setup model. In both simulations, the system is controlled with a
SoftTorque controller (see (3.22) and the parameters ct = 1829 and kt = 1177)
and the desired angular velocity is equal to 50 rpm. As can been seen, the
response of the setup model is very similar to the response of the original FEM
model. This illustrates that the dominant dynamics of the original 18-DOF
model is captured by the 4-DOF setup model.

5.2.4 Scaling of the drill-string model

An identified set of parameters for the experimental setup has been obtained in
the previous section. However, these parameters are based on a full-scale drilling
rig and, as mentioned before, such parameter values are infeasible for a lab-scale
experimental setup. To obtain feasible parameter values for the experimental
setup, a scaling of the variables and parameters is in order, while retaining the
resonance frequencies of the drill-string system. Therefore, two scaling factors
are introduced: c1 is used to scale the torque level and c2 to scale the states of
the system. The states are scaled according to:

θs =
1

c2
θ̄s (5.17)

and the equations of motion are pre-multiplied with a factor 1
c1

to scale the
torque level. This results in the following (scaled) equations of motion given by:

Msθ̈s +Dsθ̇s +Ksθs = SwsT̂ws(θ̇s) + SbsT̂bit(θ̇s,1) + StsT̂td (5.18)
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Figure 5.7: Frequency response function of the 18-DOF model, the
reduced-order model and the setup model with the identified
parameters from input torque Ttd to bit velocity ωbit.
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Figure 5.8: Frequency response function of the 18-DOF, the reduced-order
model and the setup model with the identified parameters
from input torque Ttd to top drive velocity ωtd.
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Figure 5.9: Frequency response function of the 18-DOF, the reduced-order
model and the setup model with the identified parameters
from bit torque Tbit to bit velocity ωbit, i.e. bit-mobility.

with Ms := c2
c1
M̄s, Ds := c2

c1
D̄s, Ks := c2

c1
K̄s, T̂ws := 1

c1
Tws, T̂bit := 1

c1
Tbit and

T̂td := 1
c1
Ttd. The scaled bit-rock interaction torque T̂bit is given by the following

scaled law:

T̂bit(θ̇s,1) ∈ Sign
(
θ̇s,1

)(
T̂d +

(
T̂s − T̂d

)
e
(
−30

∣∣∣θ̇s,1∣∣∣)/(N̂dπ)) (5.19)

with T̂d = 1
c1
Td, T̂s = 1

c1
Ts and N̂d = 1

c2
Nd and the scaled drill-string borehole

interaction torques can be written as

T̂ws,i ∈ T̂s,i Sign
(
θ̇s,i

)
, for i = 2, . . . ,m, (5.20)

where T̂s,i = 1
c1
Ts,i. The scaling factors are determined to be c1 = 6250 and

c2 = 10. This scaling is chosen to, first, obtain feasible torque levels for typical
motors that can be used in lab-scale systems (mainly influenced by c1) and,
second, to achieve angular position differences between adjacent discs that are
sufficiently small to avoid plastic deformation of the steel strings between those
discs. The latter aspect of course also depends on the length and diameter of
the strings, which need to have feasible dimensions. The scaled parameters are
summarized in Table 5.1, the scaled parameters regarding the interaction torques
are given in Table 5.2. As can be seen, for example the static torque Ts, which is
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Figure 5.10: Simulation result of the 18-DOF drill-string model (left-hand
side) compared with a simulation result of the 4-DOF model
of the experimental setup (right-hand side).

equal to 7700 Nm for the original system is equal to 7700/6250 = 1.232 Nm for
the lab-scale system. The top drive torque is in the order of 40 kNm for the full
scale system, whereas this is scaled to approximately 6.4 Nm for the setup and
since the states are scaled with a factor 10, a desired angular velocity of 50 rpm
in practice is equal to a desired angular velocity of 5 rpm on the setup. Note
that only the torque levels and states are scaled, while there is no time-scaling
applied. This means that the resonance frequencies of the system have not been
changed.

By applying the described scaling, the model of the experimental drill-string
setup is scaled to feasible dimensions to design a lab-scale setup. With the
method described in this section, a set of prescribed model parameters is ob-
tained for the design of the setup. The setup design is discussed in more detail
in the next section.
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Table 5.1: Parameters of the setup model.

Symbol Value Symbol Value Symbol Value
[kgm2] [Nm/rad] [Nms/rad]

J1 0.064 k12 0.630 d12 0
J2 0.708 k23 1.799 d23 0.0018
J3 0.708 k34 1.097 d34 0.0024
J4 2.845 k13 0 d13 0

k14 0 d14 0.0005
k24 0 d24 0

Table 5.2: Parameters of the scaled bit-rock interaction model and drill-
string borehole interaction torques.

Symbol Value Symbol Value

T̂s 1.232 Nm T̂s,2 2.297 Nm

T̂d 0.272 Nm T̂s,3 3.038 Nm

N̂d 0.5 rad/s T̂s,4 0.662 Nm

5.3 The experimental drill-string setup

The experimental setup is designed to be adjustable and modular. In particular,
it is designed such that is it should be possible to change the inertia of the discs,
the stiffness of the strings and, by using a hardware-in-the-loop approach, also
other parameters such as damping can be adjusted. With this hardware-in-the-
loop approach, additional dynamics is emulated in software and implemented
using the motors driving the discs. In addition, the setup is designed such
that it is possible to investigate a system with additional flexibility modes by
adding an extra disc to the setup. A schematic overview of the setup is shown
in Figure 5.11. The mechanical and electrical design of the setup is developed
by Hittech Multin BV, Shell and TU/e in a collaborative effort.

Let us now discuss the design of the setup in more detail. The total setup
is 5 m tall and has a footprint of 1 × 1 m. As can be seen in Figure 5.11(a),
the setup has 4 disc platforms to support the 4 discs of the model (see Fig-
ures 5.11(b) and 5.11(c), note that the bottom disc platform is slightly different,
which is explained in more detail later). These discs are interconnected by steel
strings to represent the torsional stiffness of the drill-string system and each
disc is equipped with a motor. For the top disc, this motor is used to drive the
system and to apply the desired control action. At the bottom disc the motor
is used to emulate the desired bit-rock interaction and at the intermediate discs
the drill-string borehole interaction torques are implemented using these motors.
In addition, these motors are used to emulate the hardware-in-the-loop compo-
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nents, such as damping torque associated with the damping constant d14, and
to compensate for undesired effects, such as friction and cogging in the motors.
Each of the motors is equipped with an encoder and the setup contains three
torque sensors to measure the torques in the interconnecting strings. Further-
more, a DS1103 controller board from dSPACE [28] is used as real-time control
and data acquisition platform. A picture of the lab-scale drill-string system is
shown in Figure 5.12.

The three upper disc platforms are identical and equipped with Georgii
Kobold KTY-F torque motors [35]. These are flat direct-drive brushless DC
motors with a maximum torque of 26 Nm and a maximum angular velocity of
250 rpm. To actuate and control these motors, Siep & Meyer SD2S motor am-
plifiers [105] are used and to measure the angular position of the discs built-in
19 bit Heidenhain ECI 119 inductive encoders [45] are used. These encoders
use an excitation coil to produce a magnetic flux and induce a current via the
magnetic filed in the receiving coils. Rotating the disc changes the magnetic
field, which is measured by the receiving coils [101]. The 19 bit encoder signal is
converted in the motor amplifiers to a 15 bit quadrature signal that is used by
the dSPACE system to determine the angular position of the discs. The angular
velocities of the discs are determined by numerical differentiation of the angular
positions measured by the encoders. The discs have a inertia of approximately
0.350 kgm2, including the inertia of the motor. By adding additional masses at
a certain radius on the discs, the inertia of the discs can be adjusted (in steps of
approximately 0.05 kgm2) to obtain the desired inertia as specified in Table 5.1.

The bottom disc platform is shown in Figure 5.13 and is different from the
other platforms. This difference has two main reasons; first, the specified inertia
of the bottom disc is much lower compared to the inertias of the other discs
and, second, to accurately implement the desired bit-rock interaction law it is
important that this disc has a low static friction. To realize these two aspects, a
disc with a smaller diameter and a different type of motor is used. The installed
motor is a brushed DC motor from Printed Motor Works (type: GN16RE)
[89] with a maximum torque of 2.55 Nm and a maximum angular velocity of
3000 rpm. The static friction in this motor is approximately 0.05 Nm which
is sufficiently lower than the dynamic torque level T̂d to be implemented (see
Table 5.2). In addition, a 16 bit Sick DFS60A incremental encoder [104] is used
together with a Copley Controls Xenus Plus motor amplifier (type: XTL-230-
40) [17]. The bottom disc has an inertia of approximately 0.03 kgm2 and can be
adjusted in steps of approximately 0.01 kgm2 to achieve the prescribed inertia.

To represent the torsional stiffness of the drill-string model, steel strings with
a specific length and diameter are used. The length and diameter are chosen
such that the prescribed stiffnesses (see Table 5.1) are achieved while keeping
in mind typical differences in angular position of adjacent discs such that the
strings are not plastically deformed. The specified damping factors are obtained
by implementing the damping using the motors (i.e. in a hardware-in-the-loop
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Figure 5.11: Schematic representation of the experimental drill-string
setup. (a) is an overview of the setup, (b) is a top view
on one of the disc platforms, (c) is a bottom view of one of
the disc platforms. Different parts are numbered as follows;
1: (steel) strings between the different discs, 2: disc (repre-
senting inertia), 3: additional masses to change the inertia
of the disc, 4: upward connection for the string, 5: flat hol-
low shaft torque motor (embedded in the frame), 6: torque
sensors, 7: downward connection for the string.
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Figure 5.12: The experimental drill-string setup.
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1

2

3

4

Figure 5.13: Bottom disc platform, with 1: the disc with additional
weights, 2: the motor, 3: the encoder, 4: the torque sensor.

fashion) based on the measured difference in angular velocity of the discs, while
compensating for the material damping that is already present in the strings.

The setup is also equipped with three PCM TQ-RT2A-25NM torque sensors
[87]. These sensors can measure up to 25 Nm with an accuracy of ±0.2%. The
torque sensors are placed below the upper two discs and just above the bottom
disc, as indicated in Figure 5.11(a) with 6a-c. The torque sensor below the top
drive disc will be used for the pipe torque measurement.

From the foregoing description of the experimental setup it becomes clear
that the setup is equipped with multiple sensors, i.e. encoders in all the discs
to measure the angular position (and determine the angular velocity) and three
torque sensors to measure the torques in the steel strings between the discs.
However, the control design strategies presented in Chapters 3 and 4 only re-
quire surface measurements. The extra sensors, which are not required for the
proposed control strategies, are important for multiple reasons. Firstly, these
sensors are used for parameter identification and validation of the setup dynam-
ics. Secondly, these sensors can be used for analyses of the obtained experimental
results. Thirdly, although this is not directly practically relevant, these sensors
can also be used for feedback in the controllers. For example, to validate the
state-feedback control strategy of Chapter 3, which requires measurements of
all the states of the system, or in order to investigate the effect of additional
measurements for the output-feedback controllers.
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5.4 Summary

In this chapter, the design of the experimental setup is discussed. First, a model
of the experimental setup, based on the 18-DOF FEM drill-string model, is
presented. The 4-DOF setup model is designed such that it represents the dom-
inant dynamics of the dynamics of an oil-field drill-string system that exhibits
torsional vibrations while drilling at certain depths. The model of the exper-
imental drill-string setup is scaled (i.e. states and torque levels are scaled) to
feasible dimensions in support of the design of the lab-scale setup. With this
scaling, the time-scales of the system have not been changed, such that the res-
onance frequencies are equal to the resonance frequencies of the original model.
Finally, the mechanical and electrical design of the designed setup is presented
in detail.



Chapter 6

Experimental results:
identification and controller

implementation

6.1 Introduction

The design of the experimental drill-string setup and its realization are pre-
sented in Chapter 5. In this chapter, the dynamical properties of the setup are
identified and the implementation and validation of the controllers designed in
Chapters 3 and 4 are presented. As mentioned in the previous chapter, the
experimental setup can be used for the experimental validation of the proposed
controller design strategies and serves as an intermediate step towards field im-
plementation of the controllers on a real rig. In the scope of this PhD research
preliminary experimental results are presented, indicating the potential of the
setup for controller validation for drill-string systems and the potential of the
controllers developed in this thesis. To fully utilize the possibilities of the de-
veloped experimental setup additional experiments can be performed. Future
research can, for example, focus on comprehensive robustness analyses of the
control strategies.

Before using the drill-string setup for the experimental validation of the de-
signed controllers, the dynamical properties of the setup have to be identified.
In addition, the implementation of the additional dynamics (i.e. damping be-
tween non-adjacent discs) and interaction torques (i.e. bit-rock interaction and
drill-string borehole interaction) is presented. These additional dynamics are
emulated in software (through so-called hardware-in-the-loop) and implemented
using the motors coupled to the discs in the setup. During the parameter iden-
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tification, it has appeared that the setup contains some undesired dynamical
effects such as cogging and viscous friction in the motors. These effects have to
be compensated for the setup to work properly and the design and implemen-
tation of the compensation of such undesired dynamics is also discussed in this
chapter. After the parameter identification, the dynamical behavior of the total
setup is compared with the resulting quantitative model of the setup based on
the identified parameters. For more details about the parameter identification,
emulation of additional dynamics and model validation the reader is referred
to [27].

Three different controller design strategies are experimentally validated on
the setup. First, the industrial SoftTorque controller is implemented and the
results are compared with the expected behavior of the closed-loop system based
on simulations and field results. Second, the implementation of a state-feedback
controller and observer-based output-feedback controller, based on the design
methodology presented in Chapter 3 is discussed and experimental results of
the state-feedback controller (therewith using measurements of all states of the
system) are presented. Third, an H∞-based controller as proposed in Chapter 4
has been implemented and tested experimentally.

This chapter is organized as follows. In Section 6.2, the compensation of
undesirable motor dynamics and the parameter identification is discussed. Next,
in Section 6.3 the implementation of the additional dynamics and interaction
torques is presented. Subsequently, the experimental validation of the different
controllers is presented in Section 6.4. Finally, the results are summarized in
Section 6.5.

6.2 Parameter identification and compensation

In order to analyze the dynamics of the experimental setup, we need to estimate
the parameters of the setup model (5.9). Moreover, the model-based controller
design approaches presented in Chapters 3 and 4 need a model of the drill-
string setup to synthesize controllers for the experimental setup. Therefore, the
performed parameter identification is discussed in more detail in this section.
However, first the compensation of undesirable motor dynamics effects, such as
cogging and (viscous) friction in the motor, is presented.

6.2.1 Compensation of motor dynamics

Let us first focus on the cogging effect in the motors. Cogging is an electro-
magnetic effect that occurs in brushless permanent magnet motors, such as the
brushless DC motors used in the experimental setup. Due to this cogging effect,
the output torque of the motor varies while actuated with a constant input
current. This is caused by the fact that the magnets on the rotor are more
strongly attracted to the cores (poles) of the motor than to the space in between
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the cores, resulting in a higher torque if the magnet is near a pole than when
the magnet is in between poles [41]. The cogging torque is position dependent
and its periodicity per revolution depends on the number of magnetic poles and
the number of teeth on the stator. The motor at the lower disc is a brushed DC
motor and therefore only the motors at the three upper discs suffer from the
cogging effect.

Compensation of the cogging effect is achieved by generating a position de-
pendent torque that is added to the desired torque in order to compensate for
the cogging effect. To identify this cogging mapping, the motor is actuated to
rotate at a low constant angular velocity; however, due to the cogging effect vari-
ations in the velocity will occur. A high-bandwidth motion controller is designed
to suppress these fluctuations by means of feedback and the generated control
action gives the torque that is necessary to compensate for the cogging effect.
The averaged position-dependent mapping of this control torque (as a function
of rotational position of the motor) over 37 full rotations is used and a mapping
of the compensation torque between 0 and 360 degrees (i.e. a full rotation) is
therewith generated. The resulting mapping for the three motors is shown in
Figure 6.1 (more details about the cogging compensation can be found in [27]).
Since the motors have 21 pole pairs we recognize 21 periods over one revolution
in the compensation torque. Applying this compensation torque mitigates the
velocity variations due to the cogging effect. In all following experiments, the
compensation torques are implemented to compensate for cogging.

Let us now consider the friction effects in the motors. To identify the friction
in the motors, experiments are performed at 18 different angular velocities in
the range of 0-30 rpm. Again, by using a high-bandwidth motion controller, the
discs are actuated to rotate at the desired angular velocity. The average torque
needed to achieve these velocities is determined (neglecting transient effects) and
these averaged torques are indicated by the dots in Figure 6.2. Since the motors
are controlled to rotate at a constant velocity these torques indicate the amount
of torque necessary to overcome the amount of friction for that particular angular
velocity. As can be seen in this figure, the amount of friction in disc 1 is much
lower than the amount of friction in the other discs. Based on the measurements
in Figure 6.2, it is assumed that the friction in the discs can be approximated
by a Coulomb friction model with viscous friction of the form

Tf,i = Fc,iSign
(
θ̇s,i

)
+ Fv,iθ̇s,i (6.1)

with θ̇s,i the angular velocity of disc i, Fc,i and Fv,i the Coulomb and viscous
friction coefficients, respectively. As one might note, the results for motors 2, 3
and 4 also show a small velocity-weakening effect at low velocities. Since this is
only a small effect and the motors are mainly used to operate at angular veloc-
ities between 5 and 15 rpm, this effect is neglected here. A least square fit of
the friction models (6.1) is made and the resulting parameter values are summa-
rized in Table 6.1 for each disc. The fitted friction models are also plotted (solid
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Figure 6.1: Mapping of the input torque as function of (angular) position
to compensate for the cogging effect for motors 2, 3 and 4.
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Figure 6.2: Measured and fitted torque as function of angular velocity of
all motors to identify the motor friction.

Table 6.1: Determined parameter values for the friction models of the
different motors.

Motor Fc,i Fv,i
[Nm] [Nms/rad]

1 0.064 0.008
2 0.854 0.394
3 0.707 0.374
4 0.897 0.256

lines) in Figure 6.2. Similar to the compensation for the cogging effects, these
identified friction terms are used in the following experiments to compensate for
these effects. However, it has to be noted that in the implementation the com-
pensation of the viscous friction at disc 1 is chosen to be 0.004 Nms/rad. This
is done because Fv,1 = 0.008 in Table 6.1 is a relatively small value and hence
overcompensation of the viscous friction is likely and would result in undesir-
able (unstable) behavior. In addition, the velocity measurement (based on the
encoder readings) is not perfect, due to e.g. sampling, numerical differentiation
and delay, which can worsen the effects due to overcompensation. Therefore, a
slightly lower value for the viscous friction compensation is used for disc 1.

6.2.2 Identification of the setup parameters

Parameter identification is important for model validation of the experimental
setup. In other words, we aim to assess whether the dynamics of the designed
experimental setup matches with that of the desired model of the experimental
setup as presented in Section 5.2.4. Additionally, an accurate model of the
experimental drill-string setup is important to synthesize controllers for the setup
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Figure 6.3: Measured frequency response function of disc 3 and the model
of a single inertia determined using a fitting procedure.

using the model-based controller design methodologies developed in Chapters 3
and 4. In this section, the main aspects of the parameter identification are
discussed, a detailed description of the parameter identification can be found
in [27].

The parameters of the model for the experimental setup are determined using
independent experiments (at least as much as possible). In other words, different
experiments have been performed, each targeting to determine a single param-
eter. First, the inertias of the separate discs are determined. Subsequently, the
interconnecting strings between two adjacent discs are connected to determine
the stiffness and damping of the steel string, independently. The parameters of
the model are determined by measuring a frequency response function (FRF)
of (a part of) the setup and fitting a model of that specific part (e.g. a single
inertia to determine the inertia of a disc) to the measured FRF to determine the
parameters.

Consider the measured frequency response function of a single disc in Fig-
ure 6.3 from motor input to encoder position output, obtained by closed-loop
measurements with a sample frequency of 1 kHz. In this figure, the frequency
response function of disc 3 is shown as an example, the procedure to determine
the inertias of the other discs is similar. To determine the inertia of the disc, a
model of a single inertia is fitted on the measured data. The transfer function



6.2 Parameter identification and compensation 135

Table 6.2: Identified inertias of the discs of the experimental setup.

Symbol Value [kgm2]
J1 0.062
J2 0.713
J3 0.703
J4 2.852

of the model for the inertia of disc 3 is given by

H3(s) =
1

J3s2
, s ∈ C, (6.2)

with J3 the inertia of disc 3 to be determined. A similar optimization procedure
as presented in Section 5.2.3 is used to determine the inertia. Hence, the ob-
jective of the optimization procedure is to find the inertia of the disc such that
the difference in the complex plane between the measured frequency response
function (Hexp

3 (jω)) and the model (H3(jω)) is minimized over all discrete fre-
quencies ω in the frequency range of interest ωl. Hence J3 is found by solving
the optimization problem below:

min
J3∈[J3, J3]

∑

ωl

(
|C(jω)W (jω)Hexp

3 (jω)− C(jω)W (jω)H3(jω)|2
)

(6.3)

with J3 and J3 a lower and upper bound for the inertia of disc 3. The transfer
function of the filter W (s) is chosen to be

W (s) = J3s
2, (6.4)

to compensate for the negative slope of the frequency response function from
torque input to angular position output. The additional weighting filter C(jω)
is the coherence of the (measured) process sensitivity, such that measurement
points with a high coherence (i.e. close to 1) are more important than measure-
ment points with a low coherence. Note that the measured frequency response
function of the disc is based on a (closed-loop) measurement of the sensitivity
and the process sensitivity. The identified inertias of the discs of the setup are
summarized in Table 6.2. Comparing these values with the prescribed model
parameters in Table 5.1, shows that the obtained inertias for the setup match
well with the prescribed values.

Let us now focus on the stiffness and (material) damping of the intercon-
necting strings. To determine the stiffness and damping of a single string, the
string is connected between two discs. This experiment is repeated twice to
determine the stiffness and damping of the three interconnecting strings. The
procedure is discussed on the basis of the string between disc 2 and 3, while for
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the other strings only the results are presented. For the fitting procedure, the
so-called collocated plant is considered (i.e. measurement and actuation at the
same disc), while the non-collocated plant (i.e measurement and actuation at
different discs) is only used to verify the results but not taken into account in
the fitting procedure. Again, the frequency response functions are measured and
shown in Figures 6.4 and 6.5. In Figure 6.4, the (measured) frequency response
from torque input at disc 3 to angular position output at disc 3 (collocated) is
shown and Figure 6.5 shows the frequency response from torque input at disc 3
and angular position output at disc 2 (non-collocated). The transfer function of
the collocated plant of the 2-DOF system is given by

H33(s) =
J2s

2 + d23s+ k23

J3J2s4 + d23(J2 + J3)s3 + k23(J3 + J2)s2
, (6.5)

with k23 and d23 the stiffness and damping to be determined, respectively. Note
that the inertias J2 and J3 are assumed to be known, based on the experiments
with the single discs. A similar objective function as in (6.3) is used and the
weighting filter W (s) to compensate for the negative slope of the frequency
response function from torque input to angular position output is given by

W (s) = s2. (6.6)

The resulting model of the 2-DOF system with the estimated parameters k23 and
d23 is shown in Figures 6.4 and 6.5. As can be seen, the model with the identified
parameters matches well with the measured frequency response functions.

These frequency response functions are measured with the interaction torques
(T̂ws and T̂bit) applied on the discs. It turned out that the stiffness character-
istic of the strings is not perfectly linear, therefore the stiffness of the strings
depends on the loading conditions. By already applying the interaction torques,
the stiffness of the strings is determined in the relevant operating range (i.e dif-
ference in angular position of the discs) for typical experiments. The obtained
model parameters are summarized in Table 6.3, comparing these results with
the prescribed values for the setup design (see Table 5.1); a difference up to
approximately 10% can be observed. This results in a mismatch between the
prescribed model and the dynamics of the setup. This means for example that
the resonance frequencies are slightly shifted for the setup compared to the pre-
scribed model. Therefore, the controller synthesis in Section 6.4 is based on
a model of the setup with the identified parameters. The identified damping
values deviate even more from their prescribed values. This was to be expected
because the prescribed damping values are very low. Moreover, the steel strings
are designed based on the stiffness properties, therewith the material damping
is a result of the chosen material, length and diameter of the string.

For the purpose of full model validation, the frequency response functions of
the full setup are shown in Figures 6.6 and 6.7. The bit-mobility is discussed in
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Figure 6.4: Measured frequency response function from torque input at
disc 3 to angular position output at disc 3 and the model
with the parameters determined using a fitting procedure.
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Figure 6.5: Measured frequency response function from torque input at
disc 3 and angular position output at disc 2 and the model
based on the identified parameters.
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Table 6.3: Identified stiffness and damping parameters of the intercon-
necting strings of the experimental setup.

Symbol Value [Nm/rad] Symbol Value [Nms/rad]
k12 0.578 d12 0.006
k23 1.767 d23 0.06
k34 1.081 d34 0.019

more detail in Section 6.4. In Figure 6.6, the frequency response function from
top drive torque input to top drive velocity output of the experimental setup and
the model based on the identified parameters is shown (the identified parameters
are based on the previous experiments and summarized in Tables 6.2 and 6.3).
The match between the measured frequency response function and the model
with identified parameters is good. However, as can be seen from this plot,
the second and especially the third mode are hardly visible in this frequency
response function (both in the measured FRF and the model). This might
lead to observability problems for the controller design strategies, this issue
is discussed more extensively in Section 6.4. The frequency response function
from top drive torque input to bit velocity output is shown in Figure 6.7. The
resonance frequencies are well estimated, although the lower resonance peaks
indicate that there might be to much damping in the model. However, it has
to be mentioned that the coherence of the process sensitivity (which is used to
determine the plant FRF from Ttd to ωbit) indicates that the measurement is
only reliable in the frequency range between 0.05 and 0.3 Hz. This might also
be the reason for the mismatch in the slope of the FRF at higher frequencies.

Summarizing, the parameters for the setup have been estimated in this sec-
tion. These parameters are determined using independent experiments. The
measured frequency response functions of the setup match well with the fre-
quency response functions of the model based on the identified parameters. How-
ever, it turned out that it is difficult to obtain a good estimate of the damping
coefficients. Especially for the second and third resonance mode, these values
might be relatively high compared to the actual damping in the system, as in-
dicated by the difference in the resonance peaks in Figures 6.6 and 6.7.

6.3 Emulation of additional dynamics

In the previous section, the parameters of the setup model have been determined.
These parameters involve the properties of the mechanical components of the
drill-string setup. As mentioned before, the interaction torques, modelling the
bit-rock interaction and drill-string borehole interaction, and damping terms
between non-adjacent discs are implemented using the motors at the discs. The
emulation of these additional dynamics is presented in this section.
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Figure 6.6: Frequency response function of the experimental setup and the
model based on the identified parameters from input torque
Ttd to top drive velocity ωtd.
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Figure 6.7: Frequency response function of the experimental setup and the
model based on the identified parameters from input torque
Ttd to bit velocity ωbit.
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Table 6.4: Identified Coulomb friction Fc,i and interaction torques T̂s,i to
be implemented of discs 2, 3 and 4.

Disc Fc,i [Nm] T̂s,i [Nm]
2 0.854 2.298
3 0.707 3.038
4 0.897 0.662

6.3.1 Drill-string borehole interaction torques

First, the implementation of the drill-string borehole interaction torques is dis-
cussed. These interaction torques act on disc 2, 3 and 4 of the experimental
setup and are modelled as (set-valued) Coulomb friction models. The model of
the drill-string borehole interaction torques to be implemented is given in (5.20)
and the parameter values for T̂s,i, with i = 2, 3, 4, are given in Table 5.2. For the
implementation of these Coulomb friction laws we make use of the Coulomb fric-
tion that is already present in the discs as identified in Section 6.2.1. The values
of the identified Coulomb friction in the motors and the interaction torques to
be implemented are summarized in Table 6.4. For disc 2 and 3 the interaction
torques to be implemented are higher than the friction in the motors, in these
cases the emulated friction torque is given by

T̂ emus,i = −sign
(
θ̇i

)(
T̂s,i − 2Fc,i

)
− Fc,i, for i = 2, 3. (6.7)

with Fc,i the identified Coulomb friction coefficients (see Section 6.2.1) and the
sign function defined by

sign (y) ,




−1, y < 0
0, y = 0
1, y > 0.

(6.8)

Using this approach the amplitude of the chattering (associated with the imple-
mentation of such discontinuous torque law) around zero velocity is minimized.
Note that due to measurement noise the velocity measurement will always fluc-
tuate between positive and negative values when the disc is standing still. This
implementation is possible because we assume that the discs are not rotating
with negative angular velocities. The implementation is also visualized in Fig-
ure 6.8. The plot on the left shows the Coulomb friction present in the motor
(in this case for disc 3). In the second plot the emulated friction model (6.7) is
shown and the right-most plot shows the achieved friction on the disc (i.e. the
emulated friction plus the friction in the motor) compared with the prescribed
model for the interaction torque (as given in (5.20)). As can be seen, there is
a mismatch between the model and the implemented interaction torque model
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Figure 6.8: Implementation method for drill-string borehole interaction
torques. (a) shows the Coulomb friction present in the mo-
tor, (b) shows the emulated friction model (6.7) and (c) shows
the total achieved friction on the disc compared with the pre-
scribed model (5.20).

for negative velocities, so the implementation is not valid for negative angular
velocities.

The implementation of the Coulomb friction law for disc 4 is slightly dif-
ferent, because there the Coulomb friction level in the motor is higher than the
interaction torque to be implemented. To emulate the drill-string borehole inter-
action torque the motor has to provide torque in positive direction to overcome
the static friction in the motor, this is achieved by

T̂ emus,4 = Fc,4 − Ts,4. (6.9)

Also in this case a mismatch between the prescribed model and the emulated
model at negative velocities is present, however, again it is assumed that the
disc will only rotate with positive angular velocity.

A measurement of the obtained drill-string borehole interaction toques at the
setup is shown in Figure 6.9. Experiments at several (positive) angular velocities
have been performed for the discs without any friction compensation and inter-
action torque emulation and with the compensation for (viscous) friction and
the emulated drill-string borehole interaction torques. As can be seen in this
figure, the achieved friction models (i.e. with emulation) match well with the de-
sired drill-string borehole interaction torques at the different discs. It has to be
mentioned again that with this implementation the emulation of the drill-string
borehole interaction torques is not accurate for negative angular velocities.
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Figure 6.9: Measurements of the obtained drill-string borehole interaction
torques.

6.3.2 Bit-rock interaction torque

The implementation of the bit-rock interaction torque (5.19) is a bit more in-
volved. This is mainly due to the fact that we would like to accurately implement
the set-valued nature of the bit-rock interaction model when the bit angular ve-
locity is equal to zero. This is important because one of the main objectives
for the experimental setup is to investigate torsional stick-slip behavior. For
the other discs this was less important because simulation results have revealed
that these discs rarely come to a complete stop (i.e. are sticking). In the im-
plementation of the bit-rock interaction it is again assumed that the bit is not
moving with negative angular velocity. That is, due to implementation issues
and measurement noise negative velocities can be obtained, however, the bit-
rock interaction model is only accurately implemented for non-negative angular
velocities.

Recall the bit-rock interaction model (5.19) to be implemented, that is

T̂bit(θ̇s,1) ∈ Sign
(
θ̇s,1

)(
T̂d +

(
T̂s − T̂d

)
e
(
−30

∣∣∣θ̇s,1∣∣∣)/(N̂dπ)) . (6.10)

For the implementation of this bit-rock interaction model, we first define a bound
ε on the bit angular velocity. For measured angular velocities higher than this
bound ε, the bit-rock interaction is implemented according to (6.10). For mea-
sured velocities smaller than this bound, a feedback controller is used to stabilize
the zero velocity setpoint (i.e it is assumed that the bit is in stick). This im-
plementation is not trivial for several reasons. First, measurement noise on the
angular velocity measurement has to be taken into account, i.e. we have to pre-
vent chattering due to measurement noise. Second, the control action should
not exceed the maximum static torque T̂s. Third, a feedforward torque based
on the torque sensor at the bottom disc is used to improve the performance of
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the position controller used when the angular velocity is smaller than the bound
ε. Therefore, the implementation of the emulated bit-rock interaction torque is
given by

T̂ emubit =

{
Tts + Tc (θs,1) , if δk = 0

−
(
T̂d +

(
T̂s − T̂d

)
e
(
−30

∣∣∣θ̇s,1∣∣∣)/(N̂dπ)) , if δk = 1
(6.11)

where Tts is the feedforward torque based on the torque sensor, Tc is the control
action of a position controller to stabilize the current angular position (i.e. zero
velocity) and the variable δk ∈ {0, 1} is used to switch between the position
controller and implementation of the bit-rock interaction law. This variable δk

is determined at every (discrete) time-step k according to

δk =





1, if δk−1 = 0 ∧
(
θ̇k−1
s,1 > ε ∧ T k−1

c ≥ Ts
)

0, if δk−1 = 0 ∧
(
θ̇k−1
s,1 ≤ ε ∨ |T k−1

c | < Ts

)

1, if δk−1 = 1 ∧
(
θ̇k−1
s,1 > ε ∨ θ̇k−500

s,1 ≤ 3ε
)

0, if δk−1 = 1 ∧
(
θ̇k−1
s,1 ≤ ε ∧ θ̇k−500

s,1 > 3ε
)
. (6.12)

Switching from the position controller (δk = 0) to direct implementation of the
bit-rock interaction law (δk = 1) occurs if the angular velocity of the bit is
higher than the bound ε and the torque delivered by the controller is sufficient
to overcome the static friction. The switch from direct implementation of the
bit-rock interaction (δk = 1) to the position controller (δk = 0) occurs if the
measured angular velocity is smaller than the bound ε. To reduce the effect of
chattering, this switch (from δk−1 = 1 to δk = 0) is only possibly if, in addition,
the bit angular velocity was larger than 3ε at a time instant 0.5 s (i.e. 500 time-
steps) earlier. This means that a slip to stick transition is only possible if the bit
velocity was sufficiently high (i.e. the bit was in slip) 0.5 s earlier. This period
of 0.5 s is chosen such that it is sufficiently larger than the period of transient
oscillations in the stick to slip transition and smaller than the typical slipping
period. The position controller is a lead filter with a first-order low-pass filter
with a cut-off frequency of 30 Hz. The lead filter is given by

Tc(s) = 15
10s+ 40

s+ 40
. (6.13)

This implementation of the bit-rock interaction model is tested with a 2-DOF
system. The upper disc is driven by a velocity controller to stabilize a constant
angular velocity of 0.3 rad/s and, at the bottom disc the bit-rock interaction
model is implemented. The response of the bottom disc and the implemented
bit-rock interaction torque is shown in Figure 6.10. The bit angular velocity
clearly shows a stick-slip limit cycle and also the torque profile of the imple-
mented bit-rock interaction looks similar to the profile obtained by simulations
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Figure 6.10: Stick-slip experiment with two discs to test the bit-rock in-
teraction implementation.

using the set-valued mapping (6.10). In Figure 6.11, the implemented bit-rock
interaction torque is plotted as function of the angular velocity. For positive
angular velocities, the implemented torques are on top of the prescribed friction
model, except for the cloud of points above 0.5 Nm. These points correspond to
transient effects of the position controller to stabilize the zero angular velocity
(i.e. sticking). In other words, in the transition from slip to stick. The points
with negative angular velocities and maximum resisting torque (i.e. -1.23 Nm)
correspond to the oscillations in the transition from stick to slip. In other words,
when the velocity is changing from zero (in stick) to positive values (in slip). The
implemented bit-rock interaction model is thus only accurate for non-negative
angular velocities, which suffices for to accurately represent the desired drill-
string dynamics.

6.3.3 Additional damping term

Finally, let us discuss the implementation of the additional damping term, to
model the damper between disc 1 and 4. In the mechanical setup, of course,
only damping (and stiffness) between adjacent discs is possible. However, in the
designed model for the setup, we would also like to include a damper between
disc 1 and 4 and possibly other damping or stiffness terms. This damping term
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is implemented based on the measured angular velocities of disc 1 and 4. The
implementation is straightforward and given by

T emud14 = ±d14

(
θ̇s,4 − θ̇s,1

)
, (6.14)

where the negative component corresponds to the torque implemented on disc
4 and the positive component to the torque implemented on disc 1. For imple-
mentation reasons d14 is chosen to be d14 = 0.0020 instead of 0.0005 as specified
in Table 5.1.

6.4 Experimental controller validation

In the previous sections, the parameters of the model for the experimental setup
are identified and the implementation of the additional dynamics, such as e.g.
the bit-rock interaction torque, is presented. In this section, the implementation
and experimental results of different controller design strategies are presented.
First, a startup scenario for the experiments on the drill-string setup is discussed
in Section 6.4.1. Next, in Section 6.4.2, the implementation of the SoftTorque
controller is discussed and an experimental result of this industrial controller
applied to the setup is shown. In Section 6.4.3, the implementation of a state-
feedback controller, based on the design methodology in Chapter 3, is given and
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Figure 6.12: Open-loop bit-mobility of the setup, i.e. the frequency re-
sponse function from bit torque Tbit to bit velocity ωbit.

corresponding experimental results are shown. In Section 6.4.4, the implemen-
tation of the observer-based output-feedback controller is discussed. Finally, in
Section 6.4.5 the implementation and experimental results are discussed for the
linear robust output-feedback controller as presented in Chapter 4.

Before going into detail on the implementation of the controllers and the ex-
perimental results, let us consider the (open-loop) bit-mobility of the experimen-
tal drill-string setup. As we have seen throughout this thesis, the bit-mobility
plays an important role in the onset of stick-slip vibrations. The open-loop bit-
mobility of the setup is shown in Figure 6.12. In the same figure, the bit-mobility
of the setup model based on the identified parameters is shown. As can be seen,
the first and third resonance mode are very well captured by the model, however,
the second flexibility mode is more damped in the model compared to the actual
bit-mobility of the setup. As mentioned before, this is again a consequence of
the fact that it is hard to accurately identify the damping parameters.

The controllers designed in Section 6.4.3 and 6.4.5 are based on the model of
the experimental setup using the identified parameters. The mismatch between
the model (based on the identified parameters) and the setup is taken into ac-
count as model uncertainty. In other words, the designed controllers (based on
the model) are implemented and their performance is analyzed based on the re-
sponse of the setup. Because of this mismatch between the setup and the model,
experimentally validating the controllers on the setup also gives an indication
of the robustness of the designed (model-based) controllers with resect to these
kind of model uncertainties.

6.4.1 Startup scenario for experiments

The startup scenario as presented in Chapters 3 and 4 for the simulations is
adapted here for the experiments. This adaptation is necessary for different
reasons: first, every experiment starts from standstill and the angular velocity
has to be increased gradually to the desired reference velocity to avoid tran-
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for t > 100 s.

sient oscillations, second, the friction in the motors is prone to changes due to
temperature, humidity etc., therefore an initialization procedure is developed
to identify these friction levels in an online fashion. For the experiments with
the state-feedback controller an additional adaptation is implemented. That is,
the desired controller is switched on 10 seconds before starting to increase the
angular velocity and the torque-on-bit. Doing so, transient oscillations that are
caused by the switch between controllers can be damped and do not interfere
with oscillations due to changing torque-on-bit and reference velocity. This is
only applicable for the experiments with the state-feedback controller; in the
experiments with the SoftTorque controller and the H∞-controller it is not nec-
essary to switch between controllers.

The startup scenario for the experiments is visualized in Figure 6.13. The
reference angular velocity of the upper discs is shown in the upper plot and the
scaling of the TOB, indicated by α is shown in the bottom plot. The timing
of the transitions in the startup scenario is indicative and might be different
in the various experiments. However, the sequence of steps is similar for all
experiments. The steps can be summarized as follows:

1. Start with zero initial velocities (i.e. the discs are not moving) and linearly
increase the reference angular velocity from zero to 3.5 rpm in the period
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between t = 0 and t = 30 s. At the same time increase the feedforward
torque (Tff ) to its nominal value. In the experiments with the state-
feedback controller, a properly tuned SoftTorque controller is used in the
first part of the startup scenario;

2. Between t = 50 and t = 90 s, adapt the drill-string borehole interaction
torques to obtain the desired values, based on the torque sensor readings,
in order to compensate for possibly changed friction characteristics;

3. If applicable, at t = 100 s, switch from the SoftTorque controller to the
state-feedback controller;

4. Gradually increase the reference angular velocity until the desired operat-
ing velocity (ωeq) is reached (in the time window 110 ≤ t < 170 s). At the
same time, slowly change the TOB (see e.g. (4.36)) to emulate that the bit
bites the formation and finally obtain the nominal operating condition in
both the angular velocity and the TOB.

Note that, the implemented top drive torque T̂td on the drill-string setup is
composed of a feedforward torque Tff and a feedback part Tfb, that is

T̂td = Tff + Tfb, (6.15)

where the feedback torque depends on the chosen control strategy.

6.4.2 SoftTorque controller

The SoftTorque controller is a controller for drill-string systems, widely used in
industry. This controller aims at damping of the first torsional flexibility mode of
the drill-string system. This active damping system is a PI-controller, based on
the error ey between the measured top drive velocity y = ωtd and the reference
angular velocity ωtd,ref , i.e. ey := ωtd,ref − ωtd. The controller is given by the
transfer function

Tfb(s) =

(
ct +

kt
s

)
ey(s) (6.16)

with ct = 2.93 and kt = 1.87 tuned such that damping of the first torsional
flexibility mode of the setup is obtained. In Figure 6.14, the closed-loop bit-
mobility of the drill-string setup with the SoftTorque controller is shown. It
is clearly visible that the first torsional mode is damped using the SoftTorque
controller, but the amplitude of the second and third mode are similar in the
open-loop and closed-loop case, illustrating a key deficiency of the SoftTorque
controller.

An experimental result of the closed-loop drill-string system with SoftTorque
controller is shown in Figure 6.15. In the response of the bit angular velocity,
stick-slip oscillations can be observed. The onset of these oscillations starts when
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Figure 6.14: Bit-mobility of the setup with SoftTorque controller.

the reference angular velocity and scaling factor α (to emulate an increase of the
WOB) are started to increase around t = 100 s. This shows experimentally that
the SoftTorque controller is indeed not able to avoid stick-slip oscillations for
the setup.

In Figure 6.15, the filtered and unfiltered response of the system are shown.
The filtered response of the system is compared with a simulation result of the
model of the setup with the identified parameters. The results are shown side-
by-side in Figure 6.16. To allow for a clear comparison, a shift of the time axis
has been applied for the experimental results. As can be seen from this figure,
the response of the experimental setup is very similar to the response of the
simulation results. The only difference is the somewhat shorter sticking period
in the simulation results between two successive groups of two slipping periods
(i.e. the long sticking period). This result further illustrates that the setup is
able to accurately emulate the nonlinear drill-string dynamics to be investigated.

6.4.3 State-feedback controller

In this section, a state-feedback controller based on the controller design method-
ology in Chapter 3 is implemented on the experimental drill-string setup. For
this state-feedback controller, it is assumed that all the states of the system
can be measured, which is of course not feasible in practice. However, the state-
feedback controller is a stepping stone towards implementation of observer-based
output-feedback controller and as mentioned in Chapter 5 the setup has the sen-
sors available to measure all the states of the system.

Let us first write the system (5.18) in first-order state-space form. Similar
to the state-space representations of the different models in Chapters 3 and 4
the states are chosen such that the state of the system is independent of the
absolute position, that is

xs =
[
θs,1 − θs,2 θ̇s,1 θ̇s,2 θs,2 − θs,3 θ̇s,3 θs,3 − θs,4 θ̇s,4

]>
. (6.17)



150 Chapter 6. Experimental results: identification and implementationi
i

“exp˙result˙ST˙temp” — 2015/7/30 — 20:01 — page 1 — #1 i
i

i
i

i
i

0 50 100 150 200 250 300

0

20

40

60

80

D
is
c
1
an

gu
la
r
ve
lo
ci
ty

[r
p
m
]

 

 
Unfiltered velocity
Filtered velocity
Reference velocity

0 50 100 150 200 250 300
−5

0

5

10

15

T
o
p
an

g
u
la
r
ve
lo
ci
ty

[r
p
m
]

0 50 100 150 200 250 300

0

2

4

6

8

10

Time [s]

T
o
p
d
ri
ve

to
rq
u
e
[N
m
]

Figure 6.15: Experimental result of the drill-string setup with the Soft-
Torque controller in the startup scenario.
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Figure 6.16: Comparison between the experimental result and simulation
result of the drill-string model with the SoftTorque con-
troller.

The resulting equations of motion are written in first-order state-space form:

ẋs = Asxs +Gsvs +Gs,2vs,2 +BsT̂td
qs = Hsxs
qs,2 = Hs,2xs
vs ∈ −ϕs(qs)
vs,2 ∈ −φs(qs,2),

(6.18)

where qs := θ̇s,1, qs,2 :=
[
θ̇s,2 θ̇s,3 θ̇s,4

]>
, are the angular velocity arguments of

the set-valued nonlinearities ϕs := T̂bit and φs := T̂ws, respectively. The bit-rock
interaction torque is given by vs and the drill-string borehole interaction torques
are given by vs,2 and T̂td ∈ R is the control input. The matrices As, Bs, Gs,
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Gs,2, Hs and Hs,2 in (6.18), with appropriate dimensions are given by

As =




0 1 −1 0 0 0 0

−
4∑
j=2

k1j

J1

−
4∑
j=2

d1j

J1
d12
J1

−k13−k14
J1

d13
J1

−k14
J1

d14
J1

k12
J2

d12
J2

−d12−d23−d24
J2

−k23−k24
J2

d23
J2

−k24
J2

d24
J2

0 0 1 0 −1 0 0

k13
J3

d13
J3

d23
J3

k23+k13
J3

−d13−d23−d34
J3

−k34
J3

d34
J3

0 0 0 0 1 0 −1

k14
J4

d14
J4

d24
J4

k24+k14
J4

d34
J4

3∑
j=1

kj4

J4

−
3∑
j=1

dj4

J4




,

Bs =




0
0
0
0
0
0
1
J4




, Gs =




0
1
J4
0
0
0
0
0




, Gs,2 =




0 0 0
0 0 0
1
J2

0 0

0 0 0
0 1

J3
0

0 0 0
0 0 1

J4




,

Hs =
[
0 1 0 0 0 0 0

]
, Hs,2 =




0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1


.

The state-feedback controller, as discussed in Section 3.4.1, for this system is
defined as

Tfb = K (xs − xs,eq) (6.19)

with xs,eq the desired equilibrium of the drill-string setup, associated with a
desired constant angular velocity ωeq > 0. The controller gains K are designed
according to the conditions given in Theorem 3.1. The results are obtained by
using SeDuMi 1.3 [111], a linear matrix inequality (LMI) solver and the YALMIP
interface [71]. The designed controller gains are given by

K =
[
15.22 −5.342 6.507 −16.47 −3.160 18.00 −7.761

]
.

The measured closed-loop bit-mobility function is shown in Figure 6.17. The
result is compared with the open-loop bit-mobility and it can be seen that all
three flexibility modes are damped by the state-feedback controller. This illus-
trates that the state-feedback controller can indeed effectively deal with multiple
torsional flexibility modes, also in this experimental setting.

Let us investigate the response of the drill-string system controlled by the
state-feedback controller. The experimental result is shown in Figure 6.18, where
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Figure 6.17: Bit-mobility of the setup with state-feedback controller.

the startup scenario is used as explained in Section 6.4.1. So, in the first 100 s,
the system is controlled by the SoftTorque controller and the results are indeed
similar to the response of the setup shown in Figure 6.15. As can be seen, the
amplitude of the control action increases when the state-feedback controller is
switched on. In addition, the state-feedback controller acts at a higher frequen-
cies to suppress vibrations in the drill-string setup, as can be observed from the
oscillations in the control signal, which have higher frequencies. The difference in
suppression of vibrations can be clearly observed by comparing the bit response
between 90 and 100 s (when SoftTorque is applied) with the response between
100 and 110 s (when the state-feedback controller is applied). The operating
conditions in terms of bit-rock interaction are similar in these two periods, that
is, there is no velocity-weakening effect in the bit-rock interaction yet. As can be
seen, the bit angular velocity fluctuates between approximately 2 and 5 rpm (the
desired reference velocity is 3.5 rpm) when the SoftTorque controller is applied.
After switching to the state-feedback controller, the amplitude of the oscillations
has been reduced and the bit angular velocity varies between approximately 3
and 4.5 rpm. Thus indeed the state-feedback controller is able to reduce the am-
plitude of the fluctuations in the angular velocity at the bit. Most importantly
is of course the question whether the state-feedback controller is also able to
mitigate the stick-slip vibrations. The experimental results with the SoftTorque
controller (see Figure 6.15) showed that when the WOB and the angular velocity
are increased, stick-slip oscillations appeared at the bit. The response of the bit
angular velocity of the system with the state-feedback controller, as shown in
the upper plot in Figure 6.18, shows that the bit angular converges to a constant
angular velocity and only small oscillations (due to disturbances in the setup)
are present. In other words, the state-feedback controller is able to mitigate the
stick-slip vibrations at the experimental setup. One might have noted that the
angular velocities of the bit and the top drive do not converge to the reference
angular velocities, but are slightly higher (approximately 6 instead of 5.5 rpm).
This is caused by a mismatch between the applied feedforward torque and the
torque that is necessary to overcome the interaction torques at the discs. The



154 Chapter 6. Experimental results: identification and implementation

state-feedback controller does not have integral action to compensate for this
steady-state mismatch and therefore an angular velocity slightly higher than the
reference velocity is obtained. In this case, the feedforward torque should be
decreased to obtain the desired angular velocity.

Summarizing, the designed state-feedback controller is able to mitigate stick-
slip vibrations in the experimental drill-string setup, in a realistic startup sce-
nario in which SoftTorque could not mitigate stick-slip oscillations. This con-
troller uses measurements of all the states in the system which is not feasible in
practice. Therefore, an observer has to be designed to estimate the states of the
setup based on surface measurements only.

6.4.4 Observer-based output-feedback controller

As mentioned before, the state-feedback controller uses measurements of all the
states of the system, which is not feasible in practice. Therefore, the controller
design methodology presented in Chapter 3 also included the design of an ob-
server to determine an estimate of the states based on surface measurements only.
Such an observer is also designed for the experimental setup and this observer
is also applied to the setup. However, implementation of the observer in order
to only use surface measurements with the observer-based output-feedback con-
troller turned out to be difficult. The current problems with the observer-based
output-feedback controller are discussed in this section.

After implementation of a suitably designed observer for the drill-string
setup, it turned out that the state estimates obtained by the observer are not
sufficiently accurate to be used in the observer-based output-feedback controller.
Two aspects play an important role in the mismatch of the observer estimates.
First, even after compensating for the cogging effect in the motors a residual dis-
turbance dependent on the angular velocity of the disc is present. The frequency
of the disturbance is related to a frequency 7 times higher than the rotational fre-
quency of the disc, however, it is not possible to determine a position-dependent
compensation for this disturbance. Since the frequency of this disturbance is
close to the eigenfrequencies of the drill-string system for typical desired angular
velocities, the observer acts on this frequency resulting in a mismatch of the state
estimates. Second, oscillations with a frequency of approximately 0.55 Hz are
present in the estimated states of the observer. It turned out that this frequency
is related to one of the poles of the observer. Due to this closed-loop pole the
observer is sensitive for disturbances at this frequency. Therefore, it also results
in a mismatch between the estimated states of the observer compared to the
actual states of the system. This second aspect might be solved by re-tuning
the observer, however, as already mentioned in Section 3.5 it is difficult to tune
the observer (and controller) gains because these are the result of the LMI con-
ditions in Theorems 3.1 and 3.2. Since, the obtained solution is probably not
unique. It might be possible to add additional constraints to the conditions for



6.4 Experimental controller validation 155i
i

“exp˙result˙state˙fb˙temp” — 2015/7/30 — 20:01 — page 1 — #1 i
i

i
i

i
i

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

D
is
c
1
an

gu
la
r
ve
lo
ci
ty

[r
p
m
]

 

 

State feedback
controller on

Unfiltered velocity
Filtered velocity
Reference velocity

0 50 100 150 200 250 300
−2

0

2

4

6

8

10

T
op

a
n
gu

la
r
ve
lo
ci
ty

[r
p
m
]

0 50 100 150 200 250 300

0

2

4

6

8

10

Time [s]

T
op

d
ri
ve

to
rq
u
e
[N
m
]

Figure 6.18: Experimental result of the drill-string setup with the de-
signed state-feedback controller in the startup scenario.
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Figure 6.19: Designed linear dynamic controllers for the experimental
drill-string setup, left plot is the controller which uses the
top drive angular velocity, the controller in the right plot is
based on the pipe torque measurement.

the observer gains, however, this has not been further investigated yet.
Further investigation of the above mentioned problems might result in a prop-

erly working observer for the experimental setup such that only surface measure-
ments can be employed for the observer-based output-feedback controller.

6.4.5 H∞-based output-feedback controller

The linear robust output-feedback controller design methodology, presented in
Chapter 4, is also used to design a controller for the experimental drill-string
setup. The results of the drill-string setup in closed-loop with the H∞-based
controller are presented in this section.

The designed linear, dynamic output-feedback controller for the experimental
setup is shown in Figure 6.19. Actually, two controllers have been designed by
different choices for the weighting filters similar to the design choices made in
Section 4.5. These controllers only use the measured top drive angular velocity
ωtd and the pipe torque measurement Tpipe. In the experimental setup, the pipe
torque measurement is based on the torque sensor reading just below the upper
disc, compensated for the additional damping term between disc 1 and 4. As
can be seen in the figure, both the high-gain and the low-gain controller have a
second-order roll-off filter and the integral action in the controller Kωtd(s), that
uses the top drive angular velocity, can be clearly recognized.
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Figure 6.20: Bit-mobility of the setup with two different H∞-controllers.

The resulting measured bit-mobilities are shown in Figure 6.20. It can be
seen that the designed controllers suppress the first and second flexibility mode
in the bit-mobility. However, the third mode is only slightly damped using these
controllers. Clearly, the high-gain controller (H∞ (hg)) achieves more damping
of the third mode than the low-gain controller (H∞ (lg)). The limited amount
of damping of this mode is caused by the fact that it is difficult to synthesize
a controller that suppresses the third flexibility mode and at the same time
satisfies the performance specifications regarding measurement noise sensitivity.
The sensitivity with respect to measurement noise plays an important role in
the design of controllers for the experimental setup, because the level of noise
(especially on the top drive angular velocity) is relatively high. In addition, as
we have seen in Figures 6.6 and 6.7, the third mode is almost unobservable in the
measured frequency response functions of the setup. Therefore, it is difficult to
suppress the third torsional flexibility mode. To obtain controllers with improved
suppression of the third flexibility mode, it might be possible to design controllers
based on improved tuning of the weighting filters. Nevertheless, the designed
controllers are applied to the experimental setup and the response of the setup
is investigated.

The measured response is shown in Figure 6.21. First, the low-gain H∞-
controller is used and after approximately 210 s we switch to the high-gain
controller. This switch is not necessary and the desired setpoint can also be
stabilized using the low-gain controller only. However, the high-gain controller
has improved robustness properties (due to the improved damping of the third
mode) which can be beneficial. By only using the high-gain controller in the
startup scenario it is not possible to stabilize the desired setpoint. A closer
look at the experimental results with the H∞-controllers shows that the low-
gain controller is able to stabilize the desired setpoint of 5.5 rpm with limited
control action (i.e. at least the controller acts less aggressively compared to
the state-feedback controller and the high-gain H∞-controller). The oscillations
in the bit angular velocity are still relatively large in amplitude; however, the
oscillations are sufficiently damped to mitigate stick-slip vibrations. In addition,
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Figure 6.21: Experimental result of the drill-string setup with the de-
signed H∞-controllers in the startup scenario, after approx-
imately 210 s the controller is switched to a high-gain H∞-
controller.
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it has to be noted that due to the presence of the roll-off filters in the controller,
high-frequent (measurement) noise is not amplified by the controller, such that
possible oscillations caused by such disturbances are avoided. The high-gain
controller clearly uses more control action, also resulting in more oscillations in
the top drive angular velocity. However, it also slightly reducing the amplitude
of the oscillations at the bit. Moreover, as mentioned before, with this controller
the robustness with respect to disturbances at the bit is improved.

Summarizing, with the designed H∞-controllers it is possible to stabilize a
desired angular velocity of 5.5 rpm and to avoid stick-slip oscillations in a realistic
scenario in which SoftTorque could not avoid stick-slip oscillations. However, it
would be worth to investigate possible improvements of the controllers (by re-
tuning the weighting filters) to improve performance. This can probably be
obtained by designing a controller that results in more suppression of the third
flexibility mode in the bit-mobility. However, the controller still has to satisfy
the performance specifications regarding measurement noise sensitivity due to
the relatively high level of measurement noise in the setup.

6.5 Summary

In this chapter, the first results obtained with the designed experimental drill-
string system are presented. The first part of this chapter focused on the identi-
fication of the parameters for the setup, compensation of undesirable dynamics
and the emulation of additional dynamics. The resulting model of the experi-
mental setup based on the identified parameters is presented. This model is used
for analysis of the setup dynamics and as a basis for the (model-based) controller
design strategies. Validation of the model of the experimental setup showed that
the setup has more damping than the prescribed design of the setup in Chap-
ter 5. In addition, it turned out that it is difficult to determine the damping
parameters. This results in a small mismatch between the model of the experi-
mental setup and the dynamics of the setup. Implementation of the (nonlinear)
drill-string borehole and bit-rock interaction torques is presented and it is shown
that with the implementation of the bit-rock interaction the setup is able to ac-
curately reproduce stick-slip vibrations. A comparison between the response of
the experimental setup and the response of the drill-string model in simulations
has evidenced that the setup is able to emulate the drill-string dynamics to be
investigated.

In the second part of this chapter, the focus is on the implementation and
validation of the controllers on the experimental setup. First, the industrial Soft-
Torque controller is implemented on the setup. Experimental results showed that
this controller is unable to stabilize the desired angular velocity of 5.5 rpm (corre-
sponding to 55 rpm for a real drilling system). The response of the experimental
setup is compared to the response of the drill-string model in simulations and it
was shown that these responses match well. This illustrates once more that the
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setup is able to accurately emulate the drill-string dynamics to be investigated.
Second, a state-feedback controller is implemented. This controller uses mea-

surements of all the states of the system. To rely on surface measurements only,
an observer has to be used, but this observer has not been successfully im-
plemented yet. The measured closed-loop bit-mobility of the system with the
state-feedback controller shows that this controller is able to damp all three tor-
sional flexibility modes. Moreover, the response of the system also shows that
this controller can successfully stabilize the desired angular velocity of 5.5 rpm
and therewith mitigate stick-slip vibrations.

Third, a linear robust output-feedback controller is implemented on the
setup. Two controllers have been designed which are experimentally tested.
These controllers only use surface measurements and damping of the flexibility
modes in the bit-mobility can be achieved. However, damping of the third flex-
ibility mode is rather limited. It turned out that it is difficult to achieve a high
level of damping of this mode while still satisfying the performance specifica-
tions on measurement noise sensitivity to reduce measurement noise amplifica-
tion. Due to the significant amount of measurement noise, especially in the top
drive velocity measurement, the sensitivity with respect to measurement noise
is important in order to mitigate stick-slip vibrations. An experimental result of
the controllers applied to the drill-string setup shows that this controller is able
to stabilize a desired angular velocity of 5.5 rpm and thus mitigates stick-slip os-
cillations for this setpoint. To improve the performance of the controllers, future
research should focus on improving the designed controllers based on re-tuning
of the weighting filters.



Chapter 7

Modelling and analysis of drilling
systems for the assessment of a

down-hole anti stick-slip tool1

7.1 Introduction

The continuous search for oil, gas, mineral resources and geo-thermal energy is
moving the drilling industry into new, unknown environments. To reach these
unconventional reservoir sections, deep and curved borehole geometries need
to be drilled. The tendency towards drilling slimmer and deeper wells requires
drill-strings of several kilometers in length to transmit the axial force and torque
necessary to drill the rock formations. These long and slender drill-string systems
makes drilling systems susceptible to self-excited vibrations. These vibrations
might lead to whirling, bit bouncing and (torsional) stick-slip [50, 57, 110, 114].
Here, the focus is on axial and torsional vibrations and their interaction. Tor-
sional stick-slip vibrations occur when the bit is stalled (due to certain operating
conditions) and the top drive system at surface is still driving the system. When
enough energy has accumulated, the bit is suddenly released and starts rotating
at very high velocities; subsequently, the bit slows down and can stall again. The
resulting stick-slip limit cycles decrease the drilling efficiency and are detrimen-
tal to the bit, (down-hole) drilling components and the drill pipes. Therefore,
mitigation of these vibrations is an important topic in the drilling industry. In
this chapter, the coupled axial and torsional dynamics are modelled and an-
alyzed for the assessment of a down-hole tool developed to mitigate stick-slip
vibrations and to improve the rate-of-penetration.

1The notation in this chapter is different from the notation used in the rest of this thesis.
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The analysis of torsional stick-slip vibrations often relies on models that ac-
count for the torsional dynamics only, see e.g. [4, 10, 13, 19, 61, 77, 114]. In these
models, it is usually assumed that the resisting torque at the bit-rock interface
can be modelled as a frictional contact with a velocity-weakening effect as re-
ported in [11,115]. Due to this velocity-weakening effect the bit-rock interaction
acts as negative damping at the bit which destabilizes the drill-string dynamics
leading to the onset of torsional stick-slip vibrations. However, experiments us-
ing single cutters to identify the bit-rock interaction [22] do not reveal such a
velocity-weakening effect. In fact, modelling of the coupled axial and torsional
dynamics, as initiated in [93], shows that the velocity-weakening effect is a con-
sequence of the drill-string dynamics in interaction with the bit-rock interface
law, rather than an intrinsic property of the bit-rock interface.

These two insights have led to modelling the torsional and axial dynamics of
drilling systems coupled via a rate-independent bit-rock interaction model pre-
sented in [22,23]. Both lumped-parameter models of the coupled axial-torsional
dynamics (see e.g. [6,21,79,93]) and infinite-dimensional models, i.e. formulated
in terms of partial differential equations [37], are considered. In this chapter,
we take a low-dimensional lumped-parameter modelling approach, motivated by
the work in [37] in which it is shown that low-dimenional models can capture
the essential drill-string dynamics relevant to coupled axial-torsional stick-slip
oscillations. However, in contrast to many other studies, we model the bit-rock
interaction as a combined cutting and frictional boundary condition as proposed
in [93] and analyzed first in [38].

As mentioned before, torsional stick-slip vibrations can be harmful for drilling
components and the drill-string itself and lead to a decrease of the drilling ef-
ficiency. Controller design methodologies to mitigate these torsional stick-slip
vibrations have been investigated extensively, see e.g. [10, 19, 30, 40, 51, 53, 103,
120, 122] for controllers designed based on models of the torsional dynamics
only, and [8] for two controller design methods based on a model of the coupled
axial-torsional dynamics. An alternative solution strategy to mitigate stick-slip
oscillations can be recognized in the use of a passive down-hole tool. In [129], a
specialized roller reamer, designed to mitigate stick-slip vibrations, is presented.
The tool is tested in the field and two offset wells have been compared, where a
reduction of stick-slip vibrations and a decrease of drilling time has been achieved
when the down-hole tool is used. Another down-hole tool is presented in [102];
this tool is referred to as the anti stick-slip tool (AST) (in early references also
called Anti Stall Technology). This is a mechanical down-hole tool which aims
to adjust the drilling torque automatically and therewith to reduce stick-slip
oscillations and increase the drilling efficiency (rate-of-penetration (ROP)). Re-
ported field results show that the tool indeed reduces the amount of vibration
related failures and improves the drilling rate-of-penetration [90,91]. This tool is
investigated more extensively in this chapter. Therefore, the drill-string model
presented in [6] is extended with a model of the tool to investigate its influence
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Figure 7.1: Impression of the anti stick-slip tool (AST) placed in the drill-
string near the bit [112].

on the drill-string dynamics. A schematic impression of the tool is shown in Fig-
ure 7.1 and its properties and the working principle are presented in Section 7.2.

The main objective of this work is to develop a modelling approach for a drill-
string system including the anti stick-slip tool developed by Tomax (see [102])
and to perform analyses to investigate the working principle of the tool. In this
context, the main contributions of this chapter are as follows. First, the drill-
string model as in [6] is extended with a model of the anti stick-slip tool. Second,
a simulation tool is developed to numerically obtain the response of the resulting
nonlinear (non-smooth) drill-string model with state-dependent delay. Based on
the simulation results, the dynamic behavior of the key variables of the drill-
string system, such as the weight-on-bit (WOB), torque-on-bit (TOB) and (bit)
angular and axial velocities of the system, can be investigated. Third, we perform
dynamic analyses on the drill-string dynamics including the anti stick-slip tool
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and compare the results with a benchmark model without the tool to assess the
effectiveness of the tool in mitigating stick-slip vibrations and improving ROP.
The analyses include a stability analysis based on a linearization approach for
delay-differential equations with state-dependent delays as proposed by [42,48].
In addition, a two time-scale analysis in the spirit of [6,38] is performed, leading
to a system with constant delay to investigate the apparent velocity-weakening
effect in the TOB (being a key destabilizing factor for the torsional dynamics
leading to stick-slip oscillations). Moreover, a (preliminary) study towards the
effect of the AST on the rate-of-penetration (ROP) is performed based on av-
eraging of the steady-state response of the simulation results of the nonlinear
model. To the best of the author’s knowledge, these results are the first attempt
to model the drill-string dynamics including the anti stick-slip tool. At the end
of this chapter, it is recommended to pursue a further study the modelling ap-
proach for drilling systems including the AST and some recommendations for
future research are proposed. The fact that there is no drill-string model includ-
ing the AST available yet also motivates the choice for the drill-string model
with relatively low order. This has been done to decrease the implementation
burden and to facilitate the analysis focusing on the working principle of the
tool.

The outline of this chapter is as follows. First, the anti stick-slip tool is
discussed in more detail and the claimed performance improvements based on
field results of drilling systems including the anti stick-slip tool are presented.
Then, the drill-string model including the AST is introduced in Section 7.3.
The resulting nonlinear drill-string model with state-dependent delay is used
for a simulation study in Section 7.4. Subsequently, in Section 7.5 the drill-
string dynamics are analyzed based on a linearization approach and a two time-
scale analysis. These analysis studies give some more insights in the claimed
performance properties of a drill-string system including AST. Finally, the main
results of this work are discussed in Section 7.6 and some recommendations for
future research are discussed in Section 7.7.

7.2 Anti stick-slip tool

The anti stick-slip tool (AST) is a patented [43] mechanical down-hole solution
placed in the lower part of the drill-string. According to [102], the working prin-
ciple of the tool can be described as follows: “The principle of the anti stick-slip
tool (AST) is to provide active down-hole control of the rock-cutting process by
diverting energy from the drilling process and using it to prevent dynamic forces
from reaching destructive levels and thereby preserving the drill-string compo-
nents as well as optimizing rock-cutting efficiency”. Under normal, stable con-
ditions, the tool will transfer torque and weight to the bit as a passive part of
the bottom hole assembly (BHA). However, if the bit becomes unstable (starts
exhibiting vibrations), the AST will intervene to regulate the bit’s depth-of-cut
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Figure 7.2: Anti Stick-slip Tool (AST). An abrupt increase in torque (M2)
will cause a telescopic contraction (S) to off-load the weight
from the cutters (F2) [2].

(DOC) by manipulating the weight-on-bit (WOB).
The tool mainly consists of two tool bodies connected to each other with

a helical spline and an internal pre-loaded spring, see Figures 7.1 and 7.2. Its
working principle can be shortly summarized as follows: any abrupt change in
torque, such as a torque spike from the cutters hanging on a hard stringer will
cause a telescopic contraction of the tool along an internal helix. This contraction
instantaneously reduces the weight on the cutters and consequently the depth-
of-cut. The contraction continues until the depth-of-cut is reduced sufficiently
(thereby reducing the torque-on-bit) for rotation to continue. An internal spring
in the tool will gradually re-apply the initial weight and the tool will repeat the
process as needed [91].

Test results as presented in [102] and field results as reported in [2,58,90,91]
revealed two main benefits of the anti stick-slip tool:

• Implementation of the anti stick-slip tool in the BHA can result in miti-
gation of (torsional) stick-slip oscillations;

• Incorporation of the AST results in a higher drilling efficiency compared
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to offset wells, especially resulting in an increase of the surface rate-of-
penetration for similar operating conditions regarding the weight-on-bit.

Overall, the AST is claimed to enable drilling highly mixed and laminated forma-
tions with less risk of severe vibrations and down-hole equipement failures [90].
In addition, it is claimed to open up ways to drill hard formations with aggres-
sive polycrystalline diamond compact (PDC) bits to maximize drilling efficiency
in terms of increased penetration rates and PDC durability [2].

Despite the above evidence based on field data, a fundamental physics-based
explanation for these effects is lacking to this date. Therefore, the above claims
are investigated in this research using a model-based approach.

7.3 Modelling of the drill-string dynamics

In this section, the model of the drill-string dynamics including AST is pre-
sented. First, in Section 7.3.1 a short overview is given of a benchmark model
that describes the coupling of the axial and torsional dynamics, excluding the
tool. This model is based on the work presented in [6]. Next, in Section 7.3.2
the anti stick-slip tool is modelled, resulting in an extended drill-string model,
including the AST. In Section 7.3.3, a model reformulation is given to obtain a
dimensionless model of the drill-string dynamics which is used for the simulations
and analyses in Sections 7.4 and 7.5, respectively.

7.3.1 Modelling of the benchmark drill-string dynamics

In Figure 7.3, a schematic illustration of a (vertical) drilling system is shown.
Such a drilling systems consists of a drilling rig on the surface, where the drill-
string is driven by a so-called top drive. The drill-string consists of drill pipes
and can be several kilometers in length; the bottom part consists of heavier-
weight drill pipe known as the bottom hole assembly (BHA). The BHA also
contains down-hole tools (e.g. down-hole motors, stabilizers and measurement
while drilling (MWD) tools) and the drill bit at its end.

A model of a drill-string system is schematically depicted in Figure 7.4(a).
Here, the top drive is not modelled and it is assumed that it exhibits a constant
rotational and vertical velocity, Ω0 and V0, respectively. Therefore, the boundary
conditions at the top of the drill-string are both prescribed angular and axial
displacement. The bottom hole assembly with axial and angular position U and
Φ, respectively, is modelled as a discrete massM with inertia I and represents the
first modal inertia of the combined drill-string and bottom hole assembly. The
drill-string is modelled as a spring with torsional stiffness C and axial stiffness K.
The viscous friction parameter D characterizes viscous friction along the drill-
string and BHA, leading to the equations of motion characterizing the drill-string
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Figure 7.3: Schematic illustration of a drilling system for a vertical bore-
hole configuration [8].

dynamics as follows:

MÜ +DU̇ +K(U − V0t) = −W c −W f , (7.1)

IΦ̈+ C(Φ− Ω0t) = −T c − T f . (7.2)

in which W i and T i (i ∈ {c, f}) denote the force and torque on the drill bit
as a result of the bit-rock interaction, respectively. The force and torque both
consists of a cutting and friction component, denoted by superscripts c and f ,
respectively, i.e. W := W c + W f and T := T c + T f . The cutting process takes
place on the cutting face of the blades with the cutters on the drill bit and
describes the removal of rock, whereas the friction component is caused by the
contact between the underside of the blades (called the wearflat) and the well
bottom. Following [22,93], these processes are modelled by

W c = naζεd, W f = nalσ̄
1 + sign

(
U̇
)

2
, (7.3)
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(a) (b)

Figure 7.4: (a) Schematic model of a drill-string [6]. (b) Bottom hole
profile between two successive blades of cutters [92].

T c =
1

2
na2εd, T f =

1

2
na2ξµlσ̄

1 + sign
(
U̇
)

2
(7.4)

with n the number of blades on the drill bit with radius a. The cutting process is
characterized by the intrinsic specific energy ε, which gives the required energy
to destroy a unit volume of rock, and the orientation of the cutting face of the
cutters on the bit, represented by ζ. The frictional process takes place at the
bit-rock interface at the underside of the blades, known as the wearflat, with
length l. The bit-rock contact at the wearflats is described by the contact stress,
which is constant (and equal to σ̄) when the bit moves downwards into the rock.
The geometry of the bit-rock contact indicates that the wearflat is no longer in
contact with the rock when the bit moves upwards. This is modelled using the
sign-function in W f , see (7.3). A frictional process at the wearflat relates this
contact force W f to the frictional torque T f via the friction coefficient µ and
the parameter ξ, which characterizes the spatial distribution of the wearflats.
Finally, the cutting forces are proportional to the depth-of-cut (DOC) d, which
is in general not constant. Specifically, the DOC depends on the axial position
of the cutter with respect to the rock surface, as generated by the previous blade
some timelapse tn ago. This is schematically depicted in Figure 7.4(b). Hence,
the depth-of-cut, describing the height of material in front of a single blade, can
be written as

d(t) = U(t)− U(t− tn(t)). (7.5)

The delay tn itself is time-dependent (actually state-dependent) and denotes the
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time interval in which the bit rotates 2π/n rad, which is the angle between two
successive blades of cutters on the bit:

t∫

t−tn(t)

dΦ(s)

ds
ds = Φ(t)− Φ(t− tn(t)) =

2π

n
. (7.6)

In the calculation of the depth-of-cut and the delay it is assumed that the drill
bit moves down in a perfectly vertical well. Lateral motions of the drill bit (i.e.
bit whirl) are not considered.

In the remainder of this chapter, the model (7.1)-(7.6) presented in this sec-
tion is referred to as the benchmark model, as this model is used as a benchmark
to compare with the model including the AST presented in the next section.

7.3.2 Modelling of the drill-string dynamics including anti
stick-slip tool

An impression of the anti stick-slip tool (AST) is given in Figure 7.5(a); the
tool comprises relatively few components. It mainly consists of two tool bodies
connected to each other with a helical spline and an internal pre-loaded spring.
The principle of the AST is that a torsional load with sufficient magnitude to
overcome the loading in the compressed spring will make the upper tool part
with internal helical spline rotate onto the mating lower part. When the upper
and lower parts screw together in this manner, the tool telescopically contracts
and the drill-string becomes shorter [102]. In this section, the model presented
in Section 7.3.1 is extended by including a model of the down-hole AST.

A schematic representation of the drill-string model including AST is shown
in Figure 7.5(b). As can be seen in this figure, the BHA is separated in two
parts, the first part is modelled as a discrete mass M with inertia I and again
represents the first modal inertia of the combined drill-string and bottom hole
assembly (as far as the part above the tool is concerned) and the second part
represents the part of the BHA below the AST, modelled as mass Mb with inertia
Ib. The coordinates of the system are given by

q =
[
U Ub Φ Φb

]>
. (7.7)

with U the axial position of the BHA (above the AST-tool), Φ the angular posi-
tion of the BHA (above the AST-tool), Ub the axial position of the bit (i.e. below
the tool) and Φb the angular position of the bit. The forces W and torques T
now depend on the axial position and velocity and angular position of the bit, as
can be seen in Figure 7.5(b). To model the AST-tool, an additional axial spring
Kb and axial damper Db are introduced and a kinematic constraint is introduced
that describes the coupling between the axial and torsional displacement, due to
the helical spline in the tool. The related holonomic constraint equation follows
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Figure 7.5: (a) Impression of the working principle of the anti stick-slip
tool (AST) [46]. (b) Schematic model of a drill-string includ-
ing anti stick-slip tool (AST).

from the relation between the lead p, lead angle β and the pitch radius r and is
given by:

U − Ub =
p

2πr
(Φr − Φbr) =

p

2π
(Φ− Φb) =: α (Φ− Φb) . (7.8)

A Lagrangian approach for systems with constraints is used to derive the
equations of motion for this system (see Appendix D.1), resulting in the equa-
tions of motions given by:

MÜ +DU̇ +Db

(
U̇ − U̇b

)
+K (U − V0t) +Kb (U − Ub) = −λ

MbÜb −Db

(
U̇ − U̇b

)
−Kb (U − Ub) = −W c −W f + λ

IΦ̈+ C (Φ− Ω0t) = αλ

IbΦ̈b = −T c − T f − αλ

(7.9)
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with the kinematic constraint that is described by (7.8):

U − Ub = α (Φ− Φb) . (7.10)

The holonomic constraint equation is used to derive an explicit expression for
the Lagrange multiplier λ; subsequently the degree of freedom related to Φ can
be eliminated. The expressions for the force, torque, depth of cut and time-
dependent delay are similar to (7.3)-(7.5), for the benchmark model. The differ-
ence is that the displacements and velocities that play a role in this respect now
appear as Ub, Φb and U̇b, Φ̇b, respectively. The resulting equations of motion in
the independent coordinates U , Ub and Φb are given by:

(
M +

I

α2

)
Ü − I

α2
Üb +

I

α
Φ̈b +DU̇ +Db

(
U̇ − U̇b

)
+K (U − V0t) +

Kb (U − Ub) +
C

α2
(U − Ub) +

C

α
(Φb − Ω0t) = 0,

(7.11)

− I

α2
Ü +

(
Mb +

I

α2

)
Üb −

I

α
Φ̈b −Db

(
U̇ − U̇b

)
−

Kb (U − Ub)−
C

α2
(U − Ub)−

C

α
(Φb − Ω0t) =

−naζε (Ub(t)− Ub(t− tn(t)))− nalσ̄
1 + sign

(
U̇b

)

2
,

(7.12)

I

α
Ü − I

α
Üb + (Ib + I) Φ̈b +

C

α
(U − Ub) + C (Φb − Ω0t) =

−1

2
na2ε (Ub(t)− Ub(t− tn(t)))− 1

2
na2ξµlσ̄

1 + sign
(
U̇b

)

2
.

(7.13)

The time delay equation for the model with AST is as follows:

t∫

t−tn(t)

dΦb(s)

ds
ds = Φb(t)− Φb(t− tn(t)) =

2π

n
. (7.14)

This model can be used for the analysis of the AST. First, in the next section
the model is transformed into a dimensionless form to reduce the number of
parameters and to facilitate numerical simulation.

7.3.3 Model reformulation

The equations of motion (7.11)-(7.14) are scaled to reduce the number of param-
eters and, in addition, perturbation coordinates are introduced to describe the
equations of motion around the nominal solution (corresponding to a constant
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rotational speed and constant rate-of-penetration, thereby reflecting nominal
drilling conditions). Introduce the characteristic time and length as:

t∗ =

√
I

C
, L∗ =

2C

εa2
.

Typically, t∗ ∼ 1 s and L∗ ∼ 1 mm. These characteristic parameters are used
for the coordinate transformation

u(τ) =
U − U0

L∗
, ub(τ) =

Ub − Ub0
L∗

, ϕb(τ) = Φb − Φb0, (7.15)

where u, ub and ϕb are functions of the dimensionless time

τ =
t

t∗
(7.16)

and represent the (scaled) relative axial (u and ub) and torsional (ϕb) displace-
ments. In (7.15), U0(t), Ub0(t) and Φb0(t) are the nominal solutions of (7.11)-
(7.13), which are given by:

U0 = V0t− DV0+B
K ,

Ub0 = V0t− DV0

K − A
αKb
− B(K+Kb)

KbK
,

Φb0 = Ω0t− A
α2Kb

− A
C − B

αKb

(7.17)

with A := 1
2na

2εV0tn0 + 1
2na

2ξµlσ̄ and B := naζεV0tn0 +nalσ̄. These solutions
correspond to a constant axial and torsional velocity V0 and Ω0, respectively,
and also induce a constant delay tn0 = 2π

Ω0n
. In dimensionless time, the time

delay is given by τn = tn
t∗

and the prescribed velocities at the surface in their
dimensionless form are given by:

v0 =
V0t∗
L∗

, ω0 = Ω0t∗. (7.18)

In addition, a perturbation of the time delay with respect to the nominal time
delay is introduced:

τ̂n = τn − τn0, (7.19)

where τn0 = tn0

t∗
= 2π

ω0n
. The above scaling and introduction of perturbation

coordinates leads to the following dimensionless model formulation:

(1 + κ)u′′ − κu′′b + νϕ′′b + γu′ − γb (u′b − u′) + η2u+

η2
b (u− ub) + κ (u− ub) + νϕb = 0.

(7.20)

−κu′′ + (m∗ + κ)u′′b − νϕ′′b + γb (u′b − u′)− η2
b (u− ub)−

κ (u− ub)− νϕb = nψ(−ub(τ) + ub(τ − τn)− v0τ̂n + λg(u′b)),
(7.21)
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Table 7.1: Parameters of the drill-string model including AST in dimen-
sionless form (7.20)-(7.23).

Parameter Symbol Value

Drill-string design ψ = ζεaI
MCp

129.4

Drill bit design β = ζµξ 0.36

Wearflat friction λ = a2lσ̄
2ζCp

5.6

Scaled viscous friction η =
√

KpI
MCp

1.59

Scaled axial damping γ = D
M

√
I
Cp

0.86

Scaled viscous friction AST ηb =
√

KAST I
MCp

4.62

Scaled axial damping AST γb = DAST
M

√
I
Cp

0.18

Mass ratio m∗ = Mb/M 0.080
Inertia ratio ι = Ib/I 0.082
Scaled inertia κ = I

Mα2 0.94
Scaled lead AST ν = κα

L∗
213.0

(1 + ι)ϕ′′b + ϕb +
κ

ν
u′′ − κ

ν
u′′b +

κ

ν
(u− ub)

= n (−ub(τ) + ub(τ − τn)− v0τ̂n + βλg(u′b)) .
(7.22)

ϕb(τ)− ϕb(τ − τn) + ω0τ̂n = 0. (7.23)

where the prime (·)′ denotes differentiation with respect to the dimensionless
time τ . The dimensionless depth-of-cut is given by

δ = ub(τ)− ub(τ − τn) + v0τn, (7.24)

and perturbations with respect to the nominal depth-of-cut are defined as δ̂ :=
δ − δ0 with δ0 = 2πv0

nω0
= v0τn0. The parameters used in this dimensionless

form are given in Table 7.1 (an overview of the model parameters based on a
real drill-string configuration is given in Appendix D.2). The nonlinear function
g(u′b) in (7.21) and (7.22) describes whether the wearflat is in contact with the
rock (g = 0) or not (g = 1), where the discontinuity at u′b = −v0 is represented
by a convex set-valued map:

g (u′b) ∈
1− Sign (u′b + v0)

2
=





0, u′b > −v0

[0, 1] , u′b = −v0

1, u′b < −v0

(7.25)

where Sign(·) is the set-valued sign function. Hence the model (7.20)-(7.23) and
the set-valued map (7.25) constitute a delay-differential inclusion with state-
dependent delay, describing the drill-string dynamics in perturbation coordi-
nates.
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It has to be noted that the model (7.20)-(7.23) describes the dynamics for
nonnegative depth-of-cut (d ≥ 0, i.e. δ ≥ 0) and positive angular velocity of the
bit (ϕ̇b > −ω0). This means that the model loses validity when the depth-of-cut
becomes negative due to severe axial vibrations, i.e. bit bouncing, or when the bit
is sticking in torsional direction. Nonetheless, the model can be used to predict
the onset of torsional vibrations which can lead to stick-slip. An approach for
the inclusion of torsional stick in the model in given in [6] and this approach is
also used for the simulation results in the next section.

7.4 Simulation results

In this section, both simulation results of the benchmark model (Section 7.3.1)
and the drill-string model including AST (Section 7.3.2) are presented. For these
simulations, we used a dedicated simulation environment that has been devel-
oped to numerically obtain the response of the non-smooth drill-string model
with set-valued discontinuity and state-dependent delay. For the simulations,
we used the models in perturbation coordinates as presented in Section 7.3.3 for
the drill-string model with and without AST. However, the results are presented

in the system coordinates q =
[
U Ub Φ Φb

]>
to support straightforward physi-

cal interpretation of the results. In Section 7.4.1, the results of the benchmark
model are presented. These results are in agreement with the results in [6],
except for some parameter changes. The simulation results of the model includ-
ing the AST are presented in Section 7.4.2. In both sections, the results are
presented for two different operating scenarios:

• A “low”-rpm case, where Ω0 = 50 rpm,

• A “high”-rpm case, where Ω0 = 120 rpm,

where the prescribed axial velocity is equal to V0 = 20 ft/hr for both scenarios.
These two scenarios are chosen because these reflect nominal drilling operations
and field observations showed that the AST performs better for high angular ve-
locities, which can be investigated by comparing the results of the two scenarios.

In this section, both claims regarding the benefits of the tool as mentioned in
Section 7.2 are investigated. The first claim, regarding mitigation of stick-slip vi-
brations by implementation of the AST in the BHA is investigated by simulation
study in Section 7.4.2 and compared with simulation result of the benchmark
model (see Section 7.4.1). The second claim, regarding the increased ROP when
using the tool is investigated in Section 7.4.3 by determining the average WOB
as function of axial velocity (ROP) based on the obtained simulation results.
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Figure 7.6: Simulation result of the benchmark model with a prescribed
angular velocity of 50 rpm and axial velocity of 20 ft/hr.

7.4.1 Simulation results of the benchmark model

The simulation result for the first operating scenario of the benchmark model is
shown in Figure 7.6. The initial conditions of the system coordinates are chosen
close to the desired setpoint. That is, small initial perturbations with respect
to the nominal solution corresponding to a constant rotational velocity and con-
stant ROP are employed. After some transient oscillations in approximately
the first 80 seconds, the response converges to a limit cycle. The amplitude
of the oscillations in the torsional velocity increase until the torsional velocity
experiences a stick-slip limit cycle. In the model it is assumed that the rock
underneath the bit cannot be indented, implying that the bit also sticks in axial
direction when the bit sticks in torsional direction. Another observation that
can be made is that the oscillations in the axial dynamics take place at a higher
frequency compared to the torsional oscillations. This has also been observed in
the analysis in [6].

From this simulation result, it can be concluded that the desired operating
point of the drill-string model is unstable and that the response of both the
torsional and axial velocity converges to a limit cycle. In Section 7.5, the stability
of the desired setpoint is further investigated by means of a linearization of the
drill-string dynamics around this nominal operating condition.

Let us now study the response of the benchmark model for the second operat-
ing scenario; herein, also oscillations can be recognized, see Figure 7.7. However,
these are oscillations with a small amplitude around the desired operating ve-
locities (note the scaling of the vertical axes). We observe, however, that the
amplitude of the oscillations is slowly increasing. Increasing the simulation time
span shows that eventually also for these operating conditions, the drill-string
dynamics show stick-slip vibrations. Therefore, it can be concluded that also
at these operating conditions the desired setpoint of the drill-string dynamics
is unstable. This observation is in correspondence with the stability analysis
in [21]. This stability analysis revealed a fast and a slow regime of instability
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Figure 7.7: Simulation result of the benchmark model with a prescribed
angular velocity of 120 rpm and axial velocity of 20 ft/hr.

depending on the nominal rotation speed, which is discussed in more detail in
Section 7.5.1. Another observation that can be made is that the oscillations in
the axial and torsional dynamics now occur at a similar time-scale.

7.4.2 Simulation results of the model including anti stick-
slip tool

Simulations of the drill-string model including AST have been performed under
the same operating conditions as the simulations of the benchmark model and
these results are presented in this section. First, the response of the system with
a desired angular velocity of 50 rpm is shown in Figure 7.8. In this figure, the
axial and torsional velocity of the bit, respectively Ub and Φb, are shown. Com-
pared to the response of the benchmark model the bit evolves faster towards a
torsional stick-slip limit cycle. Contrary to the expectation that the tool is able
to mitigate torsional stick-slip vibrations, this indicates that the growth rate of
the torsional instability has increased. This might indicate that the desired an-
gular velocity of 50 rpm is not within the working range of the AST. Moreover,
it can be seen that the amplitude of the axial vibrations at the bit has increased,
with peak values up to 5 times the amplitude of the axial vibrations in the simu-
lation of the benchmark model. However, it also has to be mentioned that these
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Figure 7.8: Simulation result of the drill-string model including AST with
a prescribed angular velocity of 50 rpm and axial velocity of
20 ft/hr. Note that this is a simulation result of the drill-
string model with AST as proposed in this thesis, it does not
represent field results of a drilling system with AST.

results are obtained using simulations of the model proposed in Section 7.3.2.
Improvements of the model and the model parameters might be necessary to
obtain a better correspondence with field results.

The results of the second scenario for the drill-string system with AST are
shown in Figure 7.9. The response of the axial and torsional velocity are shown
for a simulation with a desired angular velocity of 120 rpm. Also in this situa-
tion the torsional velocity converges to a stick-slip limit cycle; similar as for the
benchmark model it takes more time to reach this limit cycle behavior, com-
pared to the 50 rpm scenario. However, also in this case the growth rate of the
oscillations is larger for the system with tool compared to the benchmark model.
Furthermore, the axial vibrations are lower in amplitude for the 120 rpm case
compared to the 50 rpm case.

Let us now investigate if we can draw conclusions about the working principle
of the tool based on these simulation results. A possible explanation for the
working principle of the tool is given in [102]. Increasing bit torque from the
rock-cutter interface will cause the AST to contract, offloading the weight-on-bit
and reducing the depth-of-cut. The tool will then extend and reapply weight to
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Figure 7.9: Simulation result of the drill-string model including AST with
a prescribed angular velocity of 120 rpm and axial velocity of
20 ft/hr. Note that this is a simulation result of the drill-
string model with AST as proposed in this thesis, it does not
represent field results of a drilling system with AST.

deliver a steady load. To investigate this claim, the torque-on-bit, actual tool
stroke and depth-of-cut are shown in Figure 7.10 for the 120 rpm case. Note
that the stroke of the tool is indicated by Ub − U ; this means that an unloaded
axial spring in the tool corresponds to a value of zero and a negative value for
Ub − U corresponds to indentation of the tool. As can be seen in the second
plot in Figure 7.10, the spring is always indented during operation to transfer
the nominal weight and torque to the bit. In addition, it can be observed that
the actual movement of the tool is approximately 2 cm. This corresponds to
the limited contraction of the tool as reported in [2]. From the response of
the system, we can see that when the bit is in torsional stick, i.e. depth-of-
cut is constant, (for example between t ≈ 441 and t ≈ 443) the AST contracts
further. At the same time, the WOB reduces; however, at the end of the sticking
period (when the tool still contracts) the WOB increases again and a similar
pattern holds for the TOB. This increase is caused by an increase in the friction
force (torque) as the cutting force (torque) is constant when the depth-of-cut
is constant. Recall that the WOB and TOB depend on the depth-of-cut and
sign of the axial bit velocity. So these simulation results do not directly match
with the hypothesis that the tool contracts due to an increasing torque-on-bit
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resulting in a decrease of the weight-on-bit.

Another observation that can be made is that the dominant frequency in the
motion of the tool corresponds to the frequency of the torsional limit cycle, while
only a small-amplitude oscillation related to the axial dynamics is visible in the
stroke of the tool. Although the frequency of the tool movement corresponds to
the frequency of the torsional dynamics, it has to be noted that there is a phase
shift present between the tool movement and the angular velocity of the bit. So,
again, these results only partially match with the claimed working principle of
the tool.

It can be concluded that it is not possible to formulate a direct relation be-
tween the torque-on-bit, depth-of-cut and contraction of the AST, as the before
mentioned hypothesis about the working principle of the tool suggests. Thus,
the simulations do not illustrate the expected behavior of the drill-string system
including AST. From field observations and experimental results it is known
that the AST can mitigate torsional stick-slip vibrations and additionally in-
crease the rate-of-penetration. In Section 7.5, we will further investigate the
drill-string model including AST by means of linearization to investigate the
stability properties in more detail and employ averaging to investigate the axial
and torsional dynamics separately. These methods are used to further investi-
gate of the claims regarding the working principle of the AST. In Section 7.4.3,
the claim regarding the increased ROP is investigated by averaging the response
of the system obtained by numerical simulation.

7.4.3 Investigation of the effect of the tool on the rate-of-
penetration

As mentioned in Section 7.2, it is claimed that an increase of the rate-of-
penetration can be achieved (for an equal hookload at the top of the drill-string)
by using the tool in the drill-string. In other words, an increase of performance
is achieved for the same axial (and torsional) boundary conditions at the sur-
face. In the adopted model, the axial velocity at the top of the drill-string is
prescribed; therefore, it is not possible to compare the response of the model
including AST with the benchmark model for equal hookload settings. How-
ever, we can investigate the (averaged) weight-on-bit of the response of the
(nonlinear) drill-string dynamics, i.e. (7.20)-(7.23), for various prescribed axial
velocities. The (averaged) weight-on-bit as function of the (prescribed) axial
velocity gives an indication of the drilling efficiency in terms of the amount of
WOB necessary to obtain a certain rate-of-penetration. The same approach is
taken for the benchmark model such that a comparison of the averaged WOB
between the two models is possible.

The response of the drill-string model including AST is determined by numer-
ical integration of the system dynamics in (7.20)-(7.23). Based on this response,
the actual cutting force W c and (frictional) contact force W f can be deter-
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mined. When the system is in steady-state (i.e. related to stick-slip limit cycles
for most parameter settings), the cutting force and frictional force are averaged
over 2·106 dimensionless time-steps (with a stepsize of 1·10−4, i.e. approximately
350 s), resulting in an averaged value for these two components of the WOB.
This time-span is sufficiently large as a single limit cycle takes approximately
10-15 s, see e.g. Figure 7.10. Note that these averaged values are based on a
constant setting for the surface rate-of-penetration V0; this does, however, not
imply a constant axial velocity at the bit as oscillations are present due to the
drill-string dynamics. Of course, the average rate-of-penetration at the bit is
equal to the prescribed axial velocity at surface. The results of the (averaged)
total weight-on-bit for the model including AST, as well as for the benchmark
model, are shown in Figure 7.11. This figure shows that the averaged WOB
for the benchmark model is higher compared to the model including AST for
an equal reference axial velocity and a prescribed angular velocity of 120 rpm.
Or stated differently, to obtain the same rate-of-penetration a lower WOB is re-
quired for the system with tool. The results in Figure 7.11 can also be interpreted
as follows as indicated by the dashed lines. For the same level of the averaged
weight-on-bit, a significantly higher rate-of-penetration can be obtained for the
system with the tool. For example, an averaged WOB of 73 kN results in an av-
eraged rate-of-penetration of approximately 15.7 ft/hr for the benchmark model
while a rate-of-penetration of approximately 23.8 ft/hr is achieved for the model
including AST, which is an increase of more than 50%. Similar results have
been obtained for a prescribed angular velocity of 50 rpm as can been seen in
Figure D.1 in Appendix D.3. In this case the increase of the rate-of-penetration
is even higher for the model with AST compared to the model without tool.

In Figure 7.12, a distinction is made between the contribution of the cutting
force and the frictional force, for both models. Recall the expression for the
friction force given in (7.42) and especially the set-valued nature of the discon-
tinuity at U̇b = 0 (U̇ = 0 for the benchmark model). If we investigate more
closely the (averaged) friction force Ŵ f of the benchmark model, it can be seen
that for all axial velocities the friction force is equal to (or at least close to)
its maximum value. Looking at the response of the friction force as function
of time, it indeed turns out that the maximum friction force is always present;
even when U̇ = 0 (i.e. the bit is sticking in axial direction), the friction force is
close to the maximum value. For the model including the AST, the averaged
friction force are decreasing for increasing axial velocity. In addition, the av-
eraged friction force is up to 10% (depending on V0) lower than the maximum
value. The response of the friction force shows that during axial stick phases
the friction force is decreased. This indicates that during axial stick the AST
indeed contracts and therewith reduces the friction due to contact between the
wearflat and the well bottom. Moreover, it turns out that the average cutting
force has increased for the drill-string including AST compared to the benchmark
model. The fact that the (average) amount of friction is decreased and the cut-
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Figure 7.11: Averaged value of the total weight-on-bit as function of the
prescribed axial velocity at the top of the drill-string with a
prescribed rotational velocity of 120 rpm.

ting forces are increased indicates that the drilling efficiency is increased. This
can be an explanation for the increased rate-of-penetration observed in the field
when the AST is applied. Similar results have been obtained for a prescribed
angular velocity of 50 rpm (see Figure D.2 in Appendix D.3). To further confirm
these findings, some model adaptations are necessary to include hookload in the
model as a boundary condition at surface instead of a prescribed axial velocity
at surface.

7.5 Detailed analysis of the drill-string dynamics
including anti stick-slip tool

In this section, the drill-string dynamics are analyzed in further detail to achieve
better understanding of the behavior observed in the simulation results in Sec-
tion 7.4. First, we use a linearization approach for systems with state-dependent
delays, as proposed in [42,48], to study the stability of the nominal solution (con-
stant ROP and RPM). Next, a two time-scale analysis is used to investigate the
apparent velocity-weakening effect in the TOB as function of angular velocity
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for the benchmark model and the model including AST. The latter is done as
such velocity-weakening effect is a key destabilizing effect leading to torsional
stick-slip limit cycling.

7.5.1 Linearization of the drill-string dynamics

The stability of the desired angular velocity (and ROP) of the drill-string dy-
namics is investigated in this section. For this stability analysis of the delay-
differential equation, with state-dependent delay, an associated linear system is
constructed. As stated in [42,48], asymptotic stability of the nominal solution of
this associated linearized system implies (local) asymptotic stability of the de-
sired equilibrium of the original delay-differential equation. The linearized model
is used to determine the poles of the system by means of a MATLAB tool for
the computation of right-most characteristic roots of time-delay systems [125].
The right-most roots are determined for both the benchmark model and the
drill-string model including the AST. In this section, only the derivation of the
linearized system including AST is given, the linearization of the benchmark
model can be obtained in a similar way.



184 Chapter 7. Modelling and analysis of drilling systems including an AST

Recall the drill-string dynamics of the system including AST in dimensionless
form (7.20)-(7.22) and rewrite the model in the following form:

M ¨̂q = H, (7.26)

where q̂ =
[
u ub ϕb

]>
and

M :=




(1 + κ) −κ ν
−κ (m∗ + κ) −ν
κ
ν −κν (1 + ι)


 (7.27)

and

H :=



−γu′ + γb (u′b − u′)− η2u− η2

b (u− ub)− κ (u− ub)− νϕb
−γb (u′b − u′)+η2

b (u− ub)+κ (u− ub)+νϕb+nψ[−δ̂+λg(u′b)]
−κν (u− ub)− ϕb + n[−δ̂ + βλg(u′b)]


. (7.28)

By introduction of the state vector z :=
[
u ub ϕb u

′ u′b ϕ
′
b

]>
, the dynamics

(7.26) can be written in first-order state-space form as

z′ (τ) = f (z (τ) , z (τ − τn (zd)) , τn (zd (τ))) , (7.29)

where zd(s) := z(τ + s) with s ∈ [−τn, 0] and

f =




u′

u′b
ϕ′b

M−1H


 . (7.30)

Here, the state-dependent delay (satisfying (7.23)) is governed by

z3 (τ)− z3 (τ − τn) + ω0τn =
2π

n
. (7.31)

For the linearization of the dynamics in (7.29), (7.31) around z = 0, the
approach in [48] is followed. First, the state z is decomposed as follows:

z = z̄ + z̃, (7.32)

where z̄ is the constant solution around which linearization is pursued and z̃
is a perturbation with respect to z̄. The linearized system associated to the
dynamics in perturbation coordinates z̃ is given as follows:

z̃′ = D1f (z̄, z̄, τn (z̄d)) z̃ (τ) +D2f (z̄, z̄, τn (z̄d)) z̃ (τ − τn (z̄)) +

D3f (z̄, z̄, τn (z̄d))Dτn (z̄d) z̃d (τ)
(7.33)

where Dif denotes the derivative with respect to the i-th argument of f and
Dτn(zd) denotes the Fréchet derivative of the time delay τn with respect to
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zd. Since the original model is already in perturbation coordinates, the desired

constant solution is equal to z̄ =
[
0 0 0 0 0 0

]>
. Note that z̄d = z̄(τ + s) = 0

for all s ∈ [−τn, 0] and τn(z̄) = τn(z̄d) = 2π
nω0

= τn0 which follows from (7.31).
The derivatives D1f , D2f and D1fDτn z̃d are determined to be:

D1f=

[
I3 O3

O3 M
−1

]




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(−η2 − η2
b − κ) (η2

b + κ) −ν −(γ + γb) γb 0
(η2
b + κ) (−η2

b − κ− nψ) ν γb −γb 0
−κν κ

ν − n −1 0 0 0



, (7.34)

D2f =

[
I3 O3

O3 M
−1

]




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 nψ 0 0 0 0
0 n 0 0 0 0



, (7.35)

and

D3fDτn(z̄d)z̃d =

[
I3 O3

O3 M
−1

]




0
0
0
0

−nψv0

−nv0




1

ω0
(z̃3(τ − τn0)− z̃3(τ)). (7.36)

Note that there is no term related to the nonlinear function g(u′b) in the linearized
model. This is due to the fact that when the function g(u′b) is evaluated at the
constant solution z = z̄ the partial derivative is equal to zero, because we assume
v0 > 0.

Substituting (7.34)-(7.36) in (7.33) yields the following linearized model with
constant (nominal) delay τn0:

z̃′ (τ) = A0z̃ (τ) +A1z̃ (τ − τn0) (7.37)

with

A0 =

[
I3 O3

O3 M
−1

]




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(−η2 − η2
b − κ) (η2

b + κ) −ν −(γ + γb) γb 0

(η2
b + κ) (−η2

b − κ− nψ) ν + nψv0
ω0

γb −γb 0

−κν κ
ν − n −1 + nv0

ω0
0 0 0



,
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Figure 7.13: Location of the right-most eigenvalue of the benchmark
model as function of angular velocity Ω0 and a prescribed
axial velocity of 20 ft/hr.

A1 =

[
I3 O3

O3 M
−1

]




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 nψ −nψv0ω0
0 0 0

0 n −nv0ω0
0 0 0



.

The associated linearized drill-string model is used to determine the (local)
stability of the desired equilibrium. The stability is analyzed through the poles
of this linear system. Note that a delay-differential equation typically has an
infinite number of poles [74]; however, (local) stability can be investigated by
studying the location of the right-most pole. Therefore, a dedicated MATLAB
tool is used [125]. The location of the right-most pole is investigated for a range
of angular velocities for both the benchmark model and the model including
AST; the results are shown in Figure 7.13 and Figure 7.14, respectively.

In Figure 7.13, it can be seen that the real part of the right-most eigenvalue
is greater than zero, i.e. max (Re (λi)) > 0, for the angular velocities of interest.
In other words, the desired equilibrium of the benchmark model is unstable. As
already mentioned in Section 7.4.1, a fast and slow regime of instability can be
identified. For angular velocities Ω0 ≥ 69 rpm the right-most eigenvalue is close
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to the imaginary axis, indicating an instability with a small growth rate. In [21],
a stability analysis of the linearized coupled drill-string dynamics is performed.
Note that the drill-string dynamics considered in this work is slightly different
from the model in [21] (i.e. the model considered in this work also includes axial
stiffness and damping). The stability analysis in [21] demonstrates the influence
of the nominal rotation speed on the positions of the system poles. It is shown
that the torsional poles remain close to the imaginary axis upon variation of
the angular velocity, while the axial poles can move further away from this axis.
The dominance of the axial or torsional poles defines two regimes of instability.
Namely, the system exhibits slow divergence if the poles related to the torsional
dynamics dominate and fast divergence if the poles mainly associated with the
axial dynamics do. Moreover, a critical velocity ωc, which marks the transition
between the two regimes, can be determined. This transition rotation speed can
be approximated by

ωc =

√
8ψ

n
(7.38)

for the model as considered in [21]. The unscaled approximated transition ve-
locity Ωc = ωc

t∗
is equal to 70 rpm for the model parameters used in this thesis.

Although the models are different, it turns out that the calculated transition
velocity matches well with the transition velocity obtained graphically form Fig-
ure 7.13. Further investigation of the right-most root indeed confirms that for
angular velocities smaller then 69 rpm the (initial) growth rate of the oscillations
in the axial velocity u′ correspond to the location of the right-most root. While
for higher angular velocities (i.e. Ω0 ≥ 69 rpm) the growth rate of the oscillations
in the torsional velocity φ′ correspond to the location of the right-most root.

The location of the right-most pole as function of the desired angular velocity
for the drill-string model including AST is shown in Figure 7.14. As can be seen
also for the model including AST, the right-most eigenvalue lies in the right-
half-plane (RHP), indicating instability of the equilibrium corresponding to the
desired angular velocity. Remarkable is the fact that the maximum value of the
right-most eigenvalue is increasing for increasing angular velocities (apart from
the typical stability lobes for time-delay systems observable in Figure 7.14),
which is in contradiction with the hypothesis that the AST is most effective
in terms of stick-slip mitigation for higher angular velocities. Moreover, again
further investigating the right-most roots shows that these are related to the bit
axial velocity u′b. In other words, the right-most poles relate to an instability
in the axial (bit) dynamics for angular velocities in a relevant range for drilling.
This indicates that, in contrast to the results for the benchmark model, the
dominant mode of instability is always related to the axial dynamics. The axial
dynamics can still influence the torsional dynamics such that torsional stick-slip
vibrations occur. However, for typical angular velocities the unstable response
of the system is not dominated by the torsional dynamics.

To summarize, the linearization study confirms the behavior of the bench-
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Figure 7.14: Location of the right-most eigenvalue of the drill-string
model including AST as function of angular velocity Ω0 and
a prescribed axial velocity of 20 ft/hr.

mark model and the model including AST as observed in Section 7.4. For both
the benchmark model and the drill-string model including AST, the equilibria
corresponding to the desired angular velocities (and an prescribed axial velocity
of 20 ft/hr) are unstable, as indicated by the fact that the right-most eigenvalue
of the linearized system lies in the RHP for these operating conditions. Further
investigation shows that these right-most eigenvalues of the benchmark model
are related to an instability in the axial dynamics for low angular velocities and
are related to an instability in the torsional dynamics when the angular velocity
is above a certain threshold. For the model including the AST the right-most
eigenvalues are related to an instability in the axial (bit) dynamics, for angular
velocities in a relevant range for drilling.

7.5.2 Two time-scale analysis

The linearization-based analysis in the previous section indicates that the insta-
bility occurring at the fastest time-scale is related to the axial dynamics for both
models. In [6,38], it has been shown that for the benchmark model, the onset of
torsional stick-slip vibrations is driven by the (unstable) axial dynamics. More
specifically, the coupling between the axial and torsional dynamics effectively
leads to a velocity-weakening effect of the torque-on-bit as function of angular
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velocity, explaining the onset of torsional vibrations that might lead to torsional
stick-slip. In this section, we adopt a similar analysis approach to investigate
the effect of the AST on the TOB as a function of angular velocity. Again,
the analysis is described for the model including AST and the analysis of the
benchmark model is performed similarly.

As observed in the simulation results in Section 7.4, for a broad range of the
parameter settings, the axial and torsional dynamics correspond to two different
time-scales, i.e. the torsional dynamics typically evolves on a much slower time
scale than the axial dynamics. This can be explained intuitively by the fact that
the axial stiffness of the drill-string is much higher than the torsional stiffness of
the drill-string. This also allows for the individual analysis of the axial dynamics
(see also [38]), in which the slowly varying angular velocity can be considered
constant. Here, a singular perturbation and averaging approach is taken. For
the (approximative) analysis of the axial dynamics, the torsional velocity above
the AST is assumed to be constant. Next, the response of the axial dynamics is
averaged on the time scale of the torsional limit cycle.

Recall the equations of motion for the drill-string model including AST (7.9),
with an extra Lagrange multiplier (related to the constant rotational velocity
constraint following singular perturbation rationale), hence:

MÜ +DU̇ +K (U − V0t) +Kb (U − Ub) = −λ1

MbÜb −Kb (U − Ub) = −W c −W f + λ1

IΦ̈+ C (Φ− Ω0t) = αλ1 + λ2

IbΦ̈b = −T c − T f − αλ1

(7.39)

with the kinematic constraint that is described by (7.10) and the extra velocity
constraint given by

Φ̇ = Ω0 (7.40)

and associated to the extra Lagrange multiplier λ2. Rewriting the equations of
motion and eliminating the constraint equations, results in the following (ap-
proximative) description of the axial dynamics in terms of the coordinates U
and Ub:

MÜ +DU̇ −Db

(
U̇b − U̇

)
+K (U − V0t) +Kb (U − Ub) =

− 1
α

(
−T c − T f + Ib

α (Ü − Üb)
)
,

MbÜb +Db

(
U̇b − U̇

)
−Kb (U − Ub) =

−W c −W f + 1
α

(
−T c − T f + Ib

α (Ü − Üb)
)
,

(7.41)

with

W c = naζεd, W f = nalσ̄
1 + sgn

(
U̇b

)

2
(7.42)
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T c =
1

2
na2εd, T f =

1

2
na2ξµlσ̄

1 + sgn
(
U̇b

)

2
(7.43)

where d = Ub(t)− Ub(t− tn(t)) and the state-dependent time delay equation is
given by

Ω0tn +
1

α
(U (t− tn (t))− U (t) + Ub (t)− Ub (t− tn (t))) =

2π

n
. (7.44)

Following the approach described in Section 7.3.3, this model is written in di-
mensionless form as:

(1 + κb)u
′′ − κbu′′b + γu′ − γb (u′b − u′) + η2u+ η2

b (u− ub) =

nν
(
δ̂ − βλg(u′b)

)
,

(m∗ + κb)u
′′
b − κbu′′ + γb (u′b − u′))− η2

b (u− ub) =

−nψ
(
δ̂ − λg(u′b)

)
− nν

(
δ̂ − βλg(u′b)

)
,

(7.45)

where we introduced a new dimensionless parameter

κb :=
Ib

Mα2
(7.46)

and the dimensionless time delay equation is given by

ω0τ̂n +
κ

ν
(u (τ − τn)− u (τ) + ub (τ)− ub (τ − τn)) = 0. (7.47)

The dimensionless equations of motion now only describe the axial dynamics for a
constant rotational velocity above the tool. Note that the angular velocity at the
bit can still vary due to the coupling between the axial and torsional dynamics
in the tool and the fact that the constraint (Φ̇ = Ω0) only implies a constant
angular velocity of the BHA above the tool. Based on simulations of (7.45),
(7.47), the axial response can be averaged over 100 axial limit cycles. Using this
averaged response, the averaged torque-on-bit can be determined. Doing so, for
multiple prescribed (and constant) angular velocities Ω0, an averaged TOB can
be computed as a function of angular velocity as shown in Figures 7.15 and 7.16
for the benchmark model and the model including AST, respectively.

The cutting torque and friction torque, that together form the total TOB,
are depicted in Figure 7.15. From this figure, it is clear that the averaged cutting
torque is subject to a velocity-weakening effect in the torque-on-bit, whereas the
averaged (frictional) contact torques show a velocity-strengthening effect. As a
result, the overal torque-on-bit shows a velocity-weakening effect, explaining the
onset of torsional vibrations. This is in correspondence with the results of the
previous works, see e.g. [6, 38]. Note that, for the benchmark model, the extra
constraint of constant rotational velocity implies a constant time-delay τn = τn0

because there is only one torsional degree-of-freedom that is now constrained.
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Figure 7.15: Averaged value of the cutting torque T̂ c and frictional con-
tact torque T̂ f as result of averaging the response of bench-
mark model with constant angular velocity over 100 axial
limit cycles and a prescribed axial velocity of 20 ft/hr.

As mentioned before, for the model including AST this is not the case due to
the additional degree-of-freedom introduced by the tool. The drill-string model
including AST with the additional constraint on the rotational velocity ((7.45),
(7.47)) is used to determine the approximative response of the drill-string system.
Based on this response, the averaged TOB is determined for a range of rotational
velocities and the results are shown in Figure 7.16. For low angular velocities
bit-bouncing occurred, which is not incorporated in the model, and these results
are therefore excluded from the following analysis. In the figure, we observe a
similar result as for the benchmark model, with a velocity-weakening effect in
the cutting torque, a velocity-strengthening effect in the frictional contact torque
and an overall velocity-weakening effect in the torque-on-bit. As mentioned
before, the velocity-weakening effect has a destabilizing effect on the drill-string
dynamics. Reducing this negative damping effect might have a stabilizing effect
on the torsional dynamics. In Figure 7.17, the slope of the total TOB is shown
for the benchmark model and the model including AST. From this figure, it can
be seen that the negative damping effect is less severe for the model including
AST, i.e. the slope of the TOB is smaller (closer to zero) compared to the
benchmark model. This might indicate that the AST has a stabilizing effect
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Figure 7.16: Averaged value of the cutting torque T̂ c and frictional con-
tact torque T̂ f as result of averaging the response of (7.45),
(7.47) (i.e. the model including AST) over 100 axial limit
cycles and a prescribed axial velocity of 20 ft/hr.

on the torsional drill-string dynamics. However, for the used parameter values
the equilibria corresponding to the range of desired angular velocities are still
unstable, as also observed in the simulations in Section 7.4.

7.6 Discussion

In this chapter, the drill-string dynamics of a system including a down-hole
tool for stick-slip mitigation is analyzed. Although field results have shown
that the anti stick-slip tool (AST) can reduce the effect of (torsional) stick-slip
vibrations and in addition increase the rate-of-penetration compared to offset
wells, a fundamental physics-based explanation for these effects is lacking to this
date. Therefore, the drill-string dynamics of a system with AST are investigated
in this research using a model-based approach.

A drill-string model including the AST is derived by extending an existing
model of the coupled axial-torsional dynamics with a model of the tool, result-
ing in a nonlinear (non-smooth) delay-differential equation with state-dependent
delay. In a simulation study, the response of this model is compared with bench-
mark model of the drill-string dynamics without AST. The simulation results
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Figure 7.17: Slope of the averaged TOB as function of angular velocity
for the benchmark model and the model including AST.

show an unstable response of the drill-string dynamics for both the benchmark
model as the model with AST, resulting in (stick-slip) limit cycles. The unsta-
ble response of the drill-string dynamics is confirmed by a stability analysis of
the associated linear system. Further investigation shows that the right-most
eigenvalues of the benchmark model are related to an instability in the axial
dynamics for low angular velocities and are related to an instability in the tor-
sional dynamics when the angular velocity is above a certain threshold. For the
model including the AST the dominant mode of instability is always related to
the axial dynamics. In other words, for angular velocities in a relevant range for
drilling the unstable response of the system including the AST is not dominated
by the torsional dynamics.

Analysis based on time-scale separation in previous works revealed an ap-
parent velocity-weakening effect in the TOB of the benchmark model. A similar
two time-scale analysis is performed for the model including AST and, also for
the drill-string model with AST, the TOB shows a velocity-weakening effect.
However, the negative slope of the averaged torque-on-bit as function of angular
velocity for the model including AST is smaller (i.e. closer to zero) compared to
the benchmark model. This could indicate that the AST has a stabilizing effect
on the dynamics, although the response of the system for the current parameter
settings and operating conditions is still unstable.

The aforementioned analyses focused on the stability of the desired oper-
ating point of the drill-string dynamics. To investigate the claim regarding
the increased ROP of the system including the AST, the (averaged) weight-on-
bit of the response of the (nonlinear) drill-string dynamics is analyzed. It has
been shown that the benchmark model requires a higher WOB to obtain the
same ROP as the drill-string model including AST. Further investigation of the
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WOB reveals that the (averaged) frictional forces are reduced for the model
with tool, due to contraction of the tool during axial stick. At the same time
the cutting forces are increased. These two observations indicate an increased
drilling efficiency, resulting in a higher ROP. However, since the (surface) rate-
of-penetration is prescribed in the current model, the increase in ROP for equal
hookload at surface can only be investigated indirectly with the model at hand.

To conclude, a drill-string model including AST has been developed and
the drill-string dynamics of this model have been investigated. Based on the
results presented in this work, it is not possible to draw definitive conclusions
about the working principle of the tool in terms of its effectiveness in mitigating
stick-slip oscillations. However, some results indeed indicate that the AST has
a stabilizing effect on the drill-string dynamics and in addition it increases the
rate-of-penetration. To further investigate these claims, some model adaptations
are proposed and the model should be validated based on field data.

7.7 Recommendations for future research

To further investigate the working principle of the tool, it is recommended to
validate the simulation results of the model based on field measurements and
possibly apply some model adaptations. It is important to determine the model
parameters based on field data, in particular for the bit-rock related parameters.
In that case, it would be possible to validate the drill-string model based on a
representative field case. To do so, it would be valuable to have down-hole
measurements of a test run with and without the AST.

Envisioned adaptations of the model are given below. First, by taking into
account the top drive mass, the prescribed axial velocity at surface can be re-
placed by a prescribed force (hookload) boundary condition at surface. Doing
so, the claim regarding the increased ROP can be investigated for equal hook-
load boundary conditions at surface. Second, using a drill-string model including
multiple dynamical modes enables to investigate the effect of additional modes
on both hypotheses regarding the tool. Related to the latter point, it is also
worth investigating how to model could be adapted to model a drill-string in an
inclined well. This is particularly important because field results have indicated
that the AST might be less effective in (close to) vertical wells (see [102]).



Chapter 8

Conclusions and recommendations

8.1 Conclusions

In this thesis, the design and implementation of (control) strategies to elimi-
nate (torsional) stick-slip oscillations in oil-field drill-string systems have been
considered. The mitigation of stick-slip vibrations is of great practical interest
because these vibrations reduce the drilling efficiency, resulting in a decrease of
the rate-of-penetration. In addition, this type of vibrations results in excessive
bit wear, may lead to damage of the drill pipes, and is detrimental for the tools
in the bottom hole assembly.

The objective of this thesis (as stated in Section 1.2) is the development and
analysis of (control) strategies to mitigate stick-slip vibrations in drilling sys-
tems. This main objective is subdivided in three research objectives. First, the
development of controller design strategies for active feedback control of drilling
systems with multiple dominant flexibility modes and severe velocity-weakening
and uncertainty in the bit-rock interaction, second, the robustness analysis and
validation on a lab-scale drill-string system of the proposed controller design
methodologies, third, the modelling and analysis of a passive down-hole tool for
the mitigation of stick-slip vibrations and rate-of-penetration increase.

The main contributions of this thesis addressing these objectives can be sum-
marized in terms of contributions on modelling for control of torsional vibrations
in drill-string systems, on novel controller design strategies for drill-string sys-
tems, on the realization of a lab-scale drill-string system, on the experimental
validation of the proposed controllers, and on modelling and analysis of a down-
hole anti stick-slip tool:

• Modelling for control of torsional vibrations in drill-string systems: field
observations have revealed that multiple torsional flexibility modes play
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a role in the onset of stick-slip vibrations, especially in deep and curved
boreholes that are drilled nowadays. Therfore, a multi-modal model of
the torsional dynamics, exhibiting the most dominant torsional flexibility
modes and based on a finite-element method representation of a realistic
drilling system, has been proposed as a basis for controller design in Chap-
ter 2. The model is based on a jack-up drilling rig used to drill wells of
over 6000 m. During operations, stick-slip vibrations have been observed
for this rig while it is equipped with a modern SoftTorque system. This
drill-string model is used as basis for the development of novel controller
design methodologies;

• Novel controller design strategies for drill-string systems: two model-based
output-feedback controller design methodologies have been presented in
this thesis.

In Chapter 3, a novel nonlinear observer-based output-feedback control
strategy mitigating torsional stick-slip vibrations has been developed. The
particular benefits of the nonlinear observer-based output-feedback con-
troller compared to existing controllers can be summarized as follows.
First, it can effectively deal with (realistic) drill-string models with multi-
ple dominant torsional flexibility modes, second, it is robust with respect
to severe velocity-weakening (and uncertainty) in the bit-rock interaction
and, third, it only employs surface measurements, which is important be-
cause down-hole measurements are not available in practice. Additionally,
a guarantee for (local) asymptotic stability of the closed-loop reduced-
order system is given for bit-rock interaction laws satisfying a certain sec-
tor condition, which is beneficial as the bit-rock interaction is subject to
uncertainty in practice.

In Chapter 4, a novel linear robust output-feedback controller design ap-
proach to eliminate stick-slip vibrations has been developed. In addition
to the controller objectives already mentioned for the nonlinear observer-
based output-feedback controller, the linear robust output-feedback con-
troller is, firstly, optimized to have robustness with respect to uncertainty
in the bit-rock interaction and, secondly, closed-loop performance specifi-
cations regarding measurement noise sensitivity and actuator limitations
are integrated in the controller design. The combination of robustness with
respect to uncertainty in the bit-rock interaction and including closed-loop
performance specifications in the controller design while guaranteeing (lo-
cal) stability of the desired setpoint is an important improvement in the
design of controllers to mitigate stick-slip vibrations in drilling systems.
Through such design, also stability of the nonlinear closed-loop system
with the robust output-feedback controller is obtained and conditions on
the bit-rock interaction, in terms of a sector bound, for which the desired
equilibrium is locally asymptotically stable, have been derived.
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For both controllers, the robustness of the closed-loop system has been in-
vestigated in model-based case studies. The following robustness aspects
are key in the scope of practical applications, and are extensively studied
in this thesis: robustness with respect to changes in the bit-rock interac-
tion characteristics, increasing length of the drill-string, different desired
angular velocities (i.e. the operating envelope is investigated), and sensor-
and actuator-induced disturbances.

• Realization of a lab-scale drill-string system: a lab-scale oil-field drill-string
system has been designed and realized, based on the drill-string models
developed. A detailed description of the design of the experimental setup
is given in Chapter 5. The setup exhibits the essential dynamics of a real
drilling system, and is designed to represent the dynamics of an oil-field
drill-string system with multiple dominant torsional flexibility modes. A
comparison of the response of the experimental setup with the response of
the drill-string model in simulations has evidenced that the setup is able to
emulate the drill-string dynamics to be investigated. Therefore, this setup
can be used to experimentally validate the designed controllers presented
in Chapters 3 and 4.

• Experimental validation of controllers for drill-string systems: the lin-
ear robust output-feedback control strategy of Chapter 4 and the state-
feedback control strategy of Chapter 3 (using measurements of all the
states) have been implemented on the lab-scale drill-string system. The
controllers have been tested and both controllers successfully stabilize the
desired angular velocity and therewith mitigate stick-slip vibrations on the
experimental setup. Experimental validation of the designed controllers is
an important intermediate step towards field implementation of the con-
trollers on a real rig.

• Modelling and analysis of passive tools for the mitigation of stick-slip vibra-
tions and rate-of-penetration increase: a modelling and analysis approach
for a drill-string system including the anti stick-slip tool (AST) has been
proposed in Chapter 7. A drill-string model including the anti stick-slip
tool has been developed by extending an existing drill-string model of
the coupled axial and torsional dynamics. The resulting nonlinear (non-
smooth) drill-string model with state-dependent delay has been used to
assess the effectiveness of the tool with respect to mitigation of stick-slip
vibrations and increasing the rate-of-penetration. The analyses include a
stability analysis based on a linearization approach for delay-differential
equations with state-dependent delays and a two time-scale analysis. The
effect of the AST on the rate-of-penetration has been investigated based
on the simulation results of the nonlinear model.

Summarizing, two novel controller design methodologies to mitigate stick-slip
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vibrations in drill-string systems have been introduced in this thesis. The de-
signed controllers have several benefits compared to existing controllers. Namely,
the controllers can effectively deal with (realistic) drill-string models with mul-
tiple dominant torsional flexibility modes, they are robust with respect to se-
vere velocity-weakening (and uncertainty) in the bit-rock interaction and, they
only employs surface measurements. In addition, for the linear robust output-
feedback controller, closed-loop performance specifications are integrated in the
controller design. The first step towards field implementation of the designed
controllers has been taken by implementing the controllers on a lab-scale drill-
string system, which exhibits the essential dynamics of a real drilling system.
Moreover, a modelling and analysis approach for a drill-string system includ-
ing a down-hole tool, for stick-slip mitigation and rate-of-penetration increase,
has been developed. The model itself and the dynamic analyses of this model
lay a foundation for a fundamental physics-based explanation for the working
principle of such an anti stick-slip tool.

8.2 Recommendations

In this final section, recommendations for future research directions are given.
First, two general recommendations for future research are presented. These
recommendations involve possibilities for the drilling industry to enable further
improvements of the drilling performance from a control point of view.

• In this thesis, the focus has been on the design of controllers to mitigate
stick-slip vibrations using surface measurements only and drill-string sys-
tems with multiple dominant flexibility modes. The results in this work
emphasize the importance of higher flexibility modes in the onset of stick-
slip vibrations. On the other hand, it has also been shown that these higher
modes are more difficult to observe in the available surface measurements.
In that perspective, improvements in the controller designs can be obtained
when additional (real-time) measurements can be employed for the pur-
pose of feedback control. This does not necessarily mean measurements at
the bit as these might be difficult to obtain in deep boreholes, but mea-
surements along (the first part of) the drill-string could possibly already
improve the results. The results of the state-feedback controller on the
experimental setup can be seen as an example. Using measurements of all
the states of the system this controller is able to stabilize the desired set-
point. However, implementation of the controller in combination with the
observer (and thus only using surface measurements) turns out to be more
cumbersome. Additional measurements could improve the state estimates
of the observer, which improves the performance of the controller design
methodology;

• The model-based controller design methodologies developed in this thesis
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require a model of the drill-string dynamics. A model of the drill-string
can be obtained using finite-element method models of the drill-string con-
figuration as employed in this thesis. However, accurate modelling of the
bit-rock interaction requires detailed information about processes at the
bit-rock interface. Also, for simulation and analysis purposes accurate
models of the bit-rock interaction can be valuable. Down-hole measure-
ments could improve these models and therewith improve the controllers to
be designed and improve the reliability of model-based analyses. In partic-
ular, down-hole measurements (not necessarily real-time) of, for example,
torque-on-bit and angular velocity, at a sufficiently high sample rate, are
required to enable improvements of the models regarding the bit-rock in-
teraction. In addition, accurate drill-string models and especially accurate
models of the bit-rock interaction torque can be used for a proper stability
analysis of controllers (also in case the controller does not necessarily need
information about the bit-rock interaction).

In the scope of the nonlinear observer-based output-feedback controller, as intro-
duced in Chapter 3, the following recommendations for future research directions
are proposed:

• In order to facilitate the design and to decrease the implementation burden
of the resulting observer-based output-feedback controller, model reduction
is applied. With the employed balanced truncation model reduction tech-
nique, a reduced-order model, which captures the dominant modes, can
be obtained. However, it turned out that a (small) steady-state mismatch
is present between the outputs of the original system and the outputs of
the reduced-order model. Using alternative reduction methods (e.g. bal-
anced residualization) it might be possible to obtain a reduced-order model
that eliminates this mismatch while still capturing the dominant flexibility
modes. When this steady-state mismatch can be eliminated the nonlin-
ear observer-based output-feedback controller can also employ additional
measurements (such as the pipe torque measurement). As mentioned be-
fore, these additional measurements can improve the performance of the
designed controller;

• Another aspect that can be interesting to investigate is the possibility to
tune the controller and observer gains based on performance specifications
as for example top drive limitations or measurement noise sensitivity. The
design of the controller and observer gains is now solely determined by
solving the linear matrix inequalities based on the derived stability condi-
tions. Taking into account additional conditions and/or constraints on the
control gains would enable the performance-based tuning of the controller
and observer gains.

In the scope of the linear robust output-feedback controller, as introduced in
Chapter 4, the following recommendations for future research directions are
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proposed:

• The linear robust output-feedback control strategy allows to design a sta-
bilizing controller for the drill-string system and optimizes the robustness
with respect to uncertainty in the bit-rock interaction while still satis-
fying closed-loop performance specifications. However, in practice, not
only the bit-rock interaction is subject to uncertainties. Also the (linear)
drill-string dynamics can change, for example due to lengthening of the
drill-string while drilling, or it is subject to model uncertainties, such as
unmodelled dynamics. The employed robust control techniques also al-
low to incorporate such dynamic (i.e. frequency-dependent) uncertainties
of the drill-string model in the controller design methodology. This en-
ables to design controllers that are also robustly stable with respect to
uncertainties in the drill-string model;

• The designed linear robust controllers have a relatively high order (up
to approximately 80 internal states for the 18-DOF drill-string model).
Implementation of these (high-order) controllers requires quite some com-
putational power for implementation. In case the computational power is
limited, controller order reduction techniques should be used to reduce the
order of the controller;

• Tuning of the linear robust output-feedback controller is performed by
tuning of the weighting filters in the frequency domain. These weighting
filters specify bounds on specific closed-loop transfer functions. These
closed-loop transfer functions are not directly related to specific drilling
objectives, such as, operating envelope in terms of angular velocity or
robustness with respect to uncertainty. To further facilitate tuning of the
controllers, a systematic way to ‘translate’ drilling objectives to weighting
filter design should be investigated.

A recommendation for future research regarding the experimental validation of
the designed controllers is given below:

• Fully utilize the possibilities of the developed experimental setup. In the
scope of this work, the designed controllers have been implemented on the
experimental setup. The next step is to perform comprehensive robustness
analyses on the experimental setup. In addition, for the observer-based
output-feedback controller possibilities to improve the observer estimates
need to be investigated in order to use surface measurements only. After
this robustness study on the experimental setup, the possibilities for field
implementation of the designed controller need to be explored.

The modelling and analysis approach for a drill-string system including the anti
stick-slip tool, as considered in Chapter 7, leads to the following suggestions for
future research directions:
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• The developed model for the drill-string dynamics including the anti stick-
slip tool can be used to assess the effectiveness of the tool with respect
to mitigation of stick-slip vibrations and rate-of-penetration increase. In
further research, this model should be validated based on a representative
field case. Moreover, (down-hole) field data can be used to determine the
model parameters, in particular the bit-rock related parameters.

• Two model adaptations are suggested to further improve the model. First,
by taking into account the top drive mass, the prescribed axial velocity at
surface can be replaced by a prescribed force (hookload) boundary condi-
tion at surface. This model adaptation would enable to further investigate
the claim regarding the increased rate-of-penetration for equal hookload
boundary conditions at surface. Second, employing a drill-string model
including multiple dynamical modes enables to investigate the effect of
additional modes on both hypotheses regarding the tool. Related to the
latter point, it is also worth investigating how to model can be adapted
to model a drill-string in an inclined well. This is particularly important
because field results have indicated that the AST might be less effective in
(close to) vertical wells.
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A.1 FEM model drill-string configuration

The table below shows the drill-string configuration for the finite-element method
model, schematically shown in Figure A.1. The original drill-string is represented
by the equivalent pipe sections as shown in Table A.1.

Table A.1: Finite-element method drill-string configuration of the consid-
ered rig.

# Top (Surface) OD ID ρ
[

kg
m3

]
G
[

N
m2

]
E
[

N
m2

]

18 Rotational
inertia

1778 kgm2

17 Pipe section 5.73 ” 4.80 ” 494.10 m 7850 6.09e10 1.69e11

16 Pipe section 5.73 ” 4.80 ” 494.10 m 7850 6.09e10 1.69e11

15 Pipe section 5.73 ” 4.80 ” 494.10 m 7850 6.09e10 1.69e11

14 Pipe section 5.73 ” 4.80 ” 494.10 m 7850 6.09e10 1.69e11

13 Pipe section 5.73 ” 4.80 ” 494.10 m 7850 6.09e10 1.69e11

12 Pipe section 5.73 ” 4.80 ” 494.10 m 7850 6.09e10 1.69e11

11 Pipe section 5.73 ” 4.80 ” 494.10 m 7850 6.09e10 1.69e11

10 Pipe section 5.73 ” 4.80 ” 494.10 m 7850 6.09e10 1.69e11

9 Pipe section 5.73 ” 4.80 ” 494.10 m 7850 6.09e10 1.69e11

8 Pipe section 5.73 ” 4.80 ” 494.10 m 7850 6.09e10 1.69e11

7 Pipe section 3.68 ” 2.69 ” 265.25 m 7850 6.63e10 1.90e11

6 Pipe section 3.68 ” 2.69 ” 265.25 m 7850 6.63e10 1.90e11

5 Pipe section 3.68 ” 2.69 ” 265.25 m 7850 6.63e10 1.90e11

4 Pipe section 3.68 ” 2.69 ” 265.25 m 7850 6.63e10 1.90e11

3 Pipe section 4.75 ” 2.21 ” 18.83 m 7850 7.95e10 2.09e11

2 Pipe section 3.82 ” 2.40 ” 198.00 m 7850 6.35e10 1.90e11

1 Pipe section 4.85 ” 2.68 ” 30.18 m 8232 7.18e10 1.86e11

Bottom (Bit) ======
Total length 6249.00 m

The amount of friction torque at each element of the FEM model is given by
Ti, for i = 2, . . . , 18. The parameter settings for the interaction torques between
the borehole and the drill-string are given in Table A.2.
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Ttd

Tbit

θ1

θ2

θ17

θ18

Figure A.1: Schematic representation of the 18-DOF finite-element
method model.

Table A.2: Parameter settings for the amount of friction modelling the
interaction between the borehole and the drill-string.

Friction
element

Amount of
friction [Nm]

T2 248.88

T3 702.81

T4 5.5957

T5 589.17

T6 606.11

T7 609.98

T8 664.86

T9 3025.1

T10 2512.4

T11 2577.4

T12 2812.7

T13 3370.7

T14 2867.8

T15 3934.6

T16 2181.2

T17 6633.7

T18 4142.2





Appendix B

Proofs and technical results

B.1 Proof of Theorem 3.1

We will provide a concise proof (employing the results in [19]) while focusing on
the local aspect of Theorem 3.1. Consider the following LISS Lyapunov function
candidate:

V (ξr) = V1(ξr) + V2(q̃r) (B.1)

with q̃r = Hrξr and

V1(ξr) =
1

2
ξr
>Pξr, P = P> > 0, (B.2)

V2(q̃r) = γ

q̃r∫

0

ϕ̃r(σ)dσ. (B.3)

Note that V2(q̃r) is continuously differentiable on the domain Sa ⊂ R that con-
tains q̃r = 0. We will show that the function V satisfies the following bounds

ψ1(‖ξr‖) ≤ V (ξr) ≤ ψ2(‖ξr‖), (B.4)

where ψ1 and ψ2 are class K∞-functions. To do so, note that V2(q̃r) ≥ 0, ∀q̃r ∈
Sa since ϕ̃r belongs locally to [0, k], with k > 0. Furthermore, we know that

1

2
λmin(P ) ‖ξr‖2 ≤ V1(ξr) ≤

1

2
λmax(P ) ‖ξr‖2 . (B.5)

Thus

V (ξr) ≥ ψ1(‖ξr‖) :=
1

2
λmin(P ) ‖ξr‖2 . (B.6)
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Using the sector condition (3.14), an upper bound for V2 can be derived:

V2 ≤ γ
|q̃r|∫
0

|ϕ̃r(q̃r)|dσ

≤ γ
|q̃r|∫
0

kσdσ = γk
2 |q̃r|

2

≤ γk
2 ‖Hr‖2 ‖ξr‖2 .

(B.7)

Therefore,

V (ξr) ≤ ψ2(‖ξr‖) :=
1

2
λmax(P ) ‖ξr‖2 +

γk

2
‖Hr‖2 ‖ξr‖2 . (B.8)

Moreover, it can be shown (see [19]) that there exists a ε > 0 such that the time
derivative of V along the trajectories satisfies

V̇ < −ψ3(‖ξr‖) if ‖ξr‖ ≥ χ (‖e‖) (B.9)

with the class K∞-function ψ3(‖ξr‖) := ε
8 ‖ξr‖

2
and the following definition for

the class K-function χ:

χ (‖e‖) :=

√
4

ε

([
λmax(E) +

2η2
1

ε

]
‖e‖2

)

with E := 1
εK
>Br

>PPBrK and η1 := k
∥∥∥Z̆r

∥∥∥ ‖Hr‖. Consequently, we have

proven that V̇ (ξr(t)) ≤ − ε8 ‖ξr‖
2

when ‖ξr(t)‖ ≥ χ(‖e(t)‖), which means that V
is an ISS Lyapunov function. According to [107] the existence of a continuously
differentiable ISS Lyapunov function implies ISS. Given the fact that the sector
condition on ϕ̃r(·) only holds locally, see Assumption 3.1, only local ISS can be
concluded, where we can determine the bound on the initial condition ‖ξr,0‖ < c1
using the bounds on the Lyapunov function V . According to (3.1) we can write

‖ξr (t)‖ ≤ ρ (‖ξr,0‖ , t) + µ

(
sup
τ∈[0,t]

‖e(τ)‖
)
, ∀t ≥ 0, (B.10)

with

ρ (‖ξr,0‖ , t) = ψ−1
1 ◦ ν (ψ2 (‖ξr,0‖) , t)

µ

(
sup
τ∈[0,t]

‖e(τ)‖
)

= ψ−1
1 ◦ ψ2 ◦ χ

(
sup
τ∈[0,t]

‖e(τ)‖
)

and ν a solution of the differential equation

d
dt (ν (‖ξr,0‖ , t)) = −ψ3 ◦ ψ−1

2 (ν (‖ξr,0‖ , t)) ,
ν (‖ξr,0‖ , 0) = ‖ξr,0‖ . (B.11)
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To guarantee the validity of the conditions on the nonlinearity in Assumption 3.1
it has to hold that q̃r(t) ∈ Sa ∀t ≥ 0. Given the fact that q̃r = Hrξr, we have

that ‖ξr‖ < q̃r,a,min
‖Hr‖ with q̃r,a,min := min (|q̃r,a1| , |q̃r,a2|), implies that q̃r ∈ Sa.

So, we require that

‖ξr(t)‖ ≤ ρ (‖ξr,0‖ , t) + µ

(
sup
τ∈[0,t]

‖e(τ)‖
)
≤ q̃r,a,min
‖Hr‖

, ∀t > 0. (B.12)

To guarantee satisfaction of (B.12), we require the following combined condition
on the initial condition and the input e(t):

ρ̄ (‖ξr,0‖) + µ

(
sup
τ∈[0,t]

‖e(τ)‖
)
≤ q̃r,a,min
‖Hr‖

(B.13)

with ρ̄(r) := ρ(r, 0) a classK function. By, for example choosing in Definition 3.1,

c1 = ρ̄−1(α
q̃r,a,min
‖Hr‖ ) and c2 = µ−1((1 − α)

q̃r,a,min
‖Hr‖ ), with α ∈ (0, 1), it can be

shown that indeed system (3.13) is locally input-to-state stable.

B.2 Proof of Theorem 3.2

We will provide a concise formulation of the proof, while referring to [26] and
[44] for additional details on the proof. Here, we will mainly focus on as-
pects related to the local nature of the result in Theorem 3.2. Let Po and
Qo be positive definite matrices such that Po (Ar,t − LCr) + (Ar,t − LCr)Po =

−Qo and Gr
>Po = Hr − NCr, which is equivalent to the strict passivity of

(Ar,t − LCr, Gr, Hr −NCr, 0). To investigate the local asymptotic stability of
the origin of the observer error dynamics (3.18), we consider the candidate Lya-
punov function Vo(e) = 1

2e
>Poe. Along solutions of (3.17), the derivative V̇o

satisfies
V̇o = − 1

2e
>Qoe+ e> (Hr −NCr)> (ṽr − v̂r)

= − 1
2e
>Qoe+ (q1 − q2) (−ϕ̃r (q1) + ϕ̃r (q2))

(B.14)

with q1 := Hrξr, q2 := (Hr −NCr) ξ̂r +Nỹr, ṽr ∈ −ϕ̃r (q1) and v̂r ∈ −ϕ̃r (q2).
Due to monotonicity of ϕ̃r(·) for all q1 ∈ Sb and q2 ∈ Sb, see Assumption 3.2,

we can write e> (Hr −NCr)> (ṽr − v̂r) ≤ 0, hence (B.14) yields

V̇o ≤ −
1

2
e>Qoe ≤ −

1

2
λmin (Qo) ‖e‖2 , (B.15)

which implies local exponential stability, given the fact that Assumption 3.2 only
holds locally. Furthermore, it holds that

‖e(t)‖ ≤
(
λmax(Po)

λmin(Po)

) 1
2

‖e0‖ exp

(
− λmin(Qo)

2λmax(Po)
t

)
(B.16)
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as long as q1(t), q2(t) ∈ Sb. Let us investigate the bounds on ‖ξr(t)‖ and ‖e(t)‖
such that indeed q1(t) ∈ Sb and q2(t) ∈ Sb for all t ≥ 0. First, given the fact

that q1 = Hrξr, the requirement that |q1| ≤ q̃r,b,min is satisfied if ‖ξr‖ ≤ q̃r,b,min
‖Hr‖ .

Second, given the fact that q2 = (Hr −NCr) ξ̂r+Nỹr we rewrite the requirement
|q2| ≤ q̃r,b,min as

∣∣∣(Hr −NCr) ξ̂r +Nỹr

∣∣∣ =
∣∣∣Hr (ξr − e) +NCr

(
ξr − ξ̂r

)∣∣∣
≤ ‖Hr −NCr‖ ‖e‖+ ‖Hr‖ ‖ξr‖ .

(B.17)

Hence, we require that ‖Hr −NCr‖ ‖e‖+‖Hr‖ ‖ξr‖ ≤ q̃r,b,min, which is satisfied
if

‖ξr‖ ≤
εq̃r,b,min
‖Hr‖

(B.18)

‖e‖ ≤ (1− ε) q̃r,b,min
‖Hr −NCr‖

(B.19)

for some ε ∈ (0, 1). Note that Hr − NCr 6= 0 due to the strict passivity of
(Ar,t − LCr, Gr, Hr −NCr, 0). Given (B.16), if

‖e0‖ ≤
(1− ε) q̃r,b,min
‖Hr −NCr‖

(
λmax(Po)

λmin(Po)

)−1/2

, (B.20)

inequality (B.19) is valid. Note that (B.20) is guaranteed by the assumptions
on the initial conditions in the theorem and that (B.18) is also implied by the
conditions in the theorem.

B.3 Proof of Theorem 3.3

According to Theorem 3.1, we have to satisfy (B.13) to obtain local input-to-
state stability (LISS) of (3.13) with respect to observer error e(t). According to
Theorem 3.2, for the system (3.18) to be locally exponentially stable conditions
(B.18) and (B.19) have to be satisfied. The latter one is satisfied by restricting
the initial conditions on the observer error as in (B.20). Moreover, (B.13) and
(B.18) can be combined to

ρ̄ (‖ξr,0‖) + µ

(
sup
τ∈[0,t]

‖e(τ)‖
)
≤ min

(
q̃r,a,min
‖Hr‖

,
εq̃r,b,min
‖Hr‖

)
.

Using (B.19) we can write

ρ̄ (‖ξr,0‖) + µ

(
(1− ε) q̃r,b,min
‖Hr −NCr‖

)
≤ min

(
q̃r,a,min
‖Hr‖

,
εq̃r,b,min
‖Hr‖

)
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which results in the requirement on the initial condition in ξr:

ρ̄ (‖ξr,0‖) ≤ min

(
q̃r,a,min
‖Hr‖

,
εq̃r,b,min
‖Hr‖

)
− µ

(
(1− ε) q̃r,b,min
‖Hr −NCr‖

)
. (B.21)

The right-hand side of (B.21) can always be ensured to be positive, by taking
ε sufficiently close to 1, i.e. by taking ‖e0‖ sufficiently small. Now, inequality
(B.21) can always be guaranteed to be valid by taking ‖ξr,0‖ sufficiently small.
So, indeed for sufficiently small ‖ξr,0‖ and ‖e0‖, (ξr, e) = (0, 0) is an asymptoti-
cally stable equilibrium point of the interconnected system (3.13), (3.18); hence
this equilibrium is locally asymptotically stable.
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Time-stepping scheme for
first-order systems

Time-stepping is a method for numerically simulating mechanical systems with
unilateral constraints, as in this case the drill-string model with set-valued inter-
action torques along the drill-string and at the bit-rock interface. Moreau’s time-
stepping method as treated in [66] can be used for mechanical systems in second-
order form. However, the reduced-order model in Section 3.2.1, and therefore
also the observer dynamics in Section 3.4.2, are written in first-order form. Nu-
merical simulation of the closed-loop drill-string system with the observer-based
output-feedback controller is performed using a time-stepping algorithm. For
the observer dynamics an adapted time-stepping algorithm is used that is suit-
able for systems in first-order form which is briefly described in this appendix.
Here, the time-stepping algorithm is discussed in a rather concise manner.

Consider the following (nonlinear) system in first-order state-space form:

ẋ = Ax+Bu+Gv
y = Cx
q = Hx
v ∈ −ϕ(q)

(C.1)

with state x, (control) input u, output y, and v and q the input and output
related to the set-valued nonlinearity ϕ, respectively. For the application con-
sidered in this thesis, let us assume that we can split the nonlinearity ϕ in
a smooth part and a non-smooth part, i.e ϕ(q) = vsm(q) + λT (q), where the
non-smooth part is a Coulomb (i.e. set-valued) friction law:

λT (q) ∈ TsSign (q) . (C.2)
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In [68], it is shown that the Coulomb friction law in (C.2) can be rewritten using
the following proximal point formulation:

λT = proxCT (λT − rq) , with CT = {λT | − Ts ≤ λT ≤ Ts} and r > 0. (C.3)

This proximal point function can easily be incorporated in the time-stepping
algorithm using the following “min-max”-formulation:

prox[−Ts,Ts](z) =




−Ts for z ≤ −Ts,
z for − Ts < z < Ts,
Ts for z ≥ −Ts,

= min (max (−Ts, z) , Ts) .
(C.4)

This formulation will be used when implementing the time-stepping method.
Time-stepping uses a discretization using a fixed time-step and computes

the solution while taking fixed time-steps forward in time (hence the name time-
stepping). Note that at every discrete time-step k not only the state of the
system is unknown but also the friction force λT is unknown. Therefore, the
numerical integration procedure consists of two nested loops. The main loop
involves the steps forward in time and the inner loop is used to solve a set of
nonlinear algebraic equations to determine the unknowns xE and λT . The set
of nonlinear algebraic equations follows from the differential inclusion in (C.1)
evaluated at a single time-step and is given by:

xE = xA + (AxA +Bu+G (vsm (qE) + λT (qE))) dt
qE = HxE

(C.5)

with xA the state at the beginning of the time-step, u the given (control) input
and λT according to (C.3). The numerical integration procedure is completed
by solving this set of equations using a fixed-point iteration procedure. The
pseudo-code of the adapted time-stepping algorithm for first-order systems is
shown in Algorithm 1.
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Algorithm 1 Pseudo-code for the time-stepping procedure for the first-order
system (C.1).

Initialization:
t = t0 : dt : te, time vector from t0 to te with stepsize dt
N = length(t)
xk is state at time-instance t(k) with k the index of the time-step

Set parameters for time-stepping:
r: parameter in the proximal point description of the set-valued force law
tol: error criterion tolerance for the fixed-point iteration
Ts: maximum value of the set-valued force law (i.e. λT ∈ [−Ts, Ts], for q = 0)

Time-stepping method:
for k = 1 : N − 1 do

xA = xk
tA = t(k)

Solve the set of nonlinear algebraic equations (C.5) using a fixed-point
iteration, the error criterion is based on the convergence of the friction
force λT
while Not converged do

u is the control input
dx = (AxA +Bu+G (vsm + λT )) dt
xE = xA + dx
qE = HxE
vsm(qE) is the smooth part of the nonlinearity ϕ

λT,old = λT
λT = proxCT (λT − rqE , Ts)
error = ‖λT − λT,old‖
Converged if: error < tol

end while
xk+1 = xE

end for
—————————————————————————————————
function proxCT (x, a)

y = min(max(−a, x), a)
return y

end function
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Derivation and parameters of the
drill-string model including anti

stick-slip tool

D.1 Derivation equations of motion

In order to derive the equations of motion for the drill-string model including
AST, a Lagrangian approach for systems with constraints is used, that is, the
following generic form of the equation of Lagrange with constraints is used:

d

dt
(T,q̇ )− (T,q ) + (V,q ) = (Qnc)

>
+ (Wλ)

>
, (D.1)

with T the kinetic energy, V the potential energy, Qnc the non-conservative
generalized forces and λ the generalized constraint force associated with the
constraint in (7.8). First, we derive the kinetic energy of the system as follows:

T =
1

2
MU̇2 +

1

2
IΦ̇2 +

1

2
MbU̇

2
b +

1

2
IbΦ̇

2. (D.2)

The potential energy in the system follows from the springs that are present in
the system and is given by

V =
1

2
K (U − V0t)

2
+

1

2
C (Φ− Ω0t)

2
+

1

2
Kb (U − Ub)2

. (D.3)
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The non-conservative forces and torques can be determined to be

Qnc =




−DU̇ +Db

(
U̇b − U̇

)

−W −Db

(
U̇b − U̇

)

0
−T



. (D.4)

Next, we rewrite the constraint equation (7.8) in the form h(q) = 0, with

h(q) = Ub − U + α (Φ− Φb) (D.5)

to determine that

W =
∂h

∂q
=
[
−1 1 α −α

]>
. (D.6)

In order to apply the equation of Lagrange as in (D.1), we determine:

T,q = 0 (D.7)

T,q̇ =
[
MU̇ MbU̇b IΦ̇ IbΦ̇b

]
(D.8)

d

dt
(T,q̇ ) =

[
MÜ MbÜb IΦ̈ IbΦ̈b

]
(D.9)

V,q =




K (U − V0t) +Kb (U − Ub)
−Kb (U − Ub)
C (Φ− Ω0t)

0




>

(D.10)

(Wλ)
>

=
[
−λ λ αλ −αλ

]
. (D.11)

The application of Lagrange’s equations in (D.1) gives the equations of motion
for the system:

MÜ +DU̇ +Db

(
U̇ − U̇b

)
+K (U − V0t) +Kb (U − Ub) = −λ

MbÜb −Db

(
U̇ − U̇b

)
−Kb (U − Ub) = −W c −W f + λ

IΦ̈+ C (Φ− Ω0t) = αλ

IbΦ̈b = −T c − T f − αλ

(D.12)

with the kinematic constraint that is described by (7.8):

U − Ub = α (Φ− Φb) . (D.13)

From the constraint equation it follows that

Φ = U−Ub
α + Φb

Φ̈ = Ü−Üb
α + Φ̈b.

(D.14)
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This is used in the third equation of (D.12) to obtain:

I

(
Ü − Üb
α

+ Φ̈b

)
+ C

(
U − Ub
α

+ Φb − Ω0t

)
= αλ, (D.15)

and thus the Lagrange multiplier λ satisfies

λ =
I

α

(
Ü − Üb
α

+ Φ̈b

)
+
C

α

(
U − Ub
α

+ Φb − Ω0t

)
. (D.16)

This expression can be used in the equations of motion (D.12) to eliminate the
degree of freedom related to Φ. This yields the following unconstrained 3-DOF
model for the drill-string dynamics with AST:

(
M +

I

α2

)
Ü − I

α2
Üb +

I

α
Φ̈b +DU̇ +Db

(
U̇ − U̇b

)
+K (U − V0t) +

Kb (U − Ub) +
C

α2
(U − Ub) +

C

α
(Φb − Ω0t) = 0,

(D.17)

− I

α2
Ü +

(
Mb +

I

α2

)
Üb −

I

α
Φ̈b −Db

(
U̇ − U̇b

)
−

Kb (U − Ub)−
C

α2
(U − Ub)−

C

α
(Φb − Ω0t) =

−naζε (Ub(t)− Ub(t− tn(t)))− nalσ̄
1 + sign

(
U̇b

)

2
,

(D.18)

I

α
Ü − I

α
Üb + (Ib + I) Φ̈b +

C

α
(U − Ub) + C (Φb − Ω0t) =

−1

2
na2ε (Ub(t)− Ub(t− tn(t)))− 1

2
na2ξµlσ̄

1 + sign
(
U̇b

)

2
.

(D.19)

D.2 Parameters drill-string model including anti
stick-slip tool

The parameters of the drill-string model including AST (7.11)-(7.14) are given in
this appendix. The parameters are determined based on the properties of a real
drilling system including the AST and (as far as possible) on field measurements
of the drilling system under investigation.

In Table D.1, the parameters related to the bit-rock interaction are given.
The considered drilling system uses a 121/4

′′
PDC bit with 6 blades, resulting in

a drill bit radius of 0.16 m. The remaining bit-rock related parameters could be
determined based on (down-hole) measurement data and the approach proposed
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Table D.1: Bit parameters for the model with the AST included.

Parameter Symbol Value Unit
Drill bit radius a 0.16 [m]
Specific energy ε 60 [MPa]
Wearflat length l 1.2·10−3 [m]
Contact stress σ̄ 60 [MPa]
Cutting face orientation ζ 0.6 [-]
Bit geometry parameter ξ 1 [-]
Friction coefficient µ 0.6 [-]
Number of blades n 6 [-]

in [23]. However, the available (surface) measurement data was not reliable
enough to accurately determine these parameters based on field data. There-
fore, the parameter values ε, l, σ̄, ζ, ξ and µ are based on the parameter values
obtained from other studies (i.e. [6, 37]). Possibly, a better correspondence be-
tween field results and the simulation results can be obtained if these parameters
can be validated based on suitable (preferably down-hole) field measurements.

The model parameters regarding the mechanical properties of the drill-string
model are given in Table D.2. These parameters are based on the drill-string and
BHA configuration of the drilling system under investigation and also include
the properties of the AST (i.e. lead, leadangle, axial spring stiffness and damping
in the tool) that is used in this drilling system.
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Table D.2: Drill-string parameters for the model with the AST included.

Parameter Symbol Value Unit
Steel density ρs 8000 [kg/m3]
Steel shear modulus G 77 [GPa]
Steel elasticity modulus E 200 [GPa]
Drill pipe length Lp 8013.5 [m]
Length BHA below AST Lb 44.6 [m]
Length BHA above AST Lhp 229.2 [m]
Drill pipe outer radius rpo 0.084 [m]
Drill pipe inner radius rpi 0.075 [m]
Heavy drill pipe outer rad. rhpo 0.84 [m]
Heavy drill pipe inner rad. rhpi 0.057 [m]
AST outer radius rbo 0.106 [m]
AST inner radius rbi 0.036 [m]
AST helix radius rh 0.081 [m]
Leadangle θ π/4 [rad]
Lead p = tan(θ) ∗ 2πrh 0.509 [m]
Constraint constant α = p

2π 0.081 [m]
Drill pipe mass Mp = ρπ(r2

po − r2
pi)Lp 2.88·105 [kg]

Heavy drill pipe mass Mhp=ρπ(r2
hpo − r2

hpi)Lhp 2.19·105 [kg]

BHA below AST mass Mb = ρπ(r2
bo − r2

bi)Lb 1.11·104 [kg]
Effective mass M = 4

π2Mp +Mhp 1.39·105 [kg]
Area cross section pipe Ap = π(r2

po − r2
pi) 4.49·10−3 [m2]

Area cross section BHA Ahp = π(r2
hpo − r2

hpi) 1.19·10−2 [m2]

Area cross section AST Ab = π(r2
bo − r2

bi) 3.12·10−2 [m2]

Drill pipe inertia Ip = ρLp
π
2 (r4

po − r4
pi) 1827.4 [kgm2]

BHA above AST inertia Ihp=ρLhp
π
2 (r4

hpo − r4
hpi) 113.0 [kgm2]

BHA below AST inertia Ib = ρLb
π
2 (r4

bo − r4
bi) 69.8 [kgm2]

Effective inertia I = 4
π2 Ip + Ihp 853.6 [kgm2]

Drill pipe torsional stiffn. Cp =
GJp
Lp

273.9 [Nm/rad]

Drill pipe axial spring Kp =
EAp
Lp

1.12·105 [N/m]

AST axial spring stiffness Kb 9.5·105 [N/m]
AST axial damping Db 14.3·103 [Ns/m]
Drill-string axial damping D 67.7·103 [Ns/m]
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Figure D.1: Averaged value of the total weight-on-bit as function of the
prescribed axial velocity at the top of the drill-string with a
prescribed rotational velocity of 50 rpm.

D.3 Investigation of the effect of the tool on the
rate-of-penetration: 50 rpm case

The same analysis as presented in Section 7.4.3 for a prescribed rotational veloc-
ity of 120 rpm has been performed for a prescribed rotational velocity of 50 rpm.
The results are shown in Figures D.1 and D.2. Similar conclusions can be drawn
as for the 120 rpm case, that is for the same level of averaged weight-on-bit,
a significantly higher rate-of-penetration can be obtained for the system with
tool. The difference in ROP between the system with and without AST is even
higher compared to the 120 rpm case, as can be seen in Figure D.1. For ex-
ample, an averaged WOB of 75 kN results in an averaged rate-of-penetration of
approximately 10.0 ft/hr for the benchmark model while a rate-of-penetration
of approximately 22.8 ft/hr is achieved for the model including AST.

In Figure D.2, again a distinction is made between the contribution of the
cutting force and the frictional force, for both models. Also for the 50 rpm case,
for the model including the AST the averaged friction forces are decreasing for
increasing axial velocity. While for the model without the tool the friction force
is close to the maximum value, independently of the prescribed axial velocity.
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Ŵ c Benchmark
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[26] A. Doris, A. L. Juloski, N. Mihajlović, W. P. M. H. Heemels, N. van de Wouw, and
H. Nijmeijer. Observer designs for experimental non-smooth and discontinuous
systems. IEEE Transactions on Control Systems Technology, 16(6):1323–1332,
2008.

[27] T.T.B. Dorussen. Experimental model and controller validation for drilling sys-
tems. Master of Science Thesis, D&C 2015.057, Eindhoven University of Tech-
nology, Department of Mechanical Engineering, 2015.

[28] dSPACE. DS1103 ppc controller board. Website: https://www.dspace.com/en/
inc/home/products/hw/singbord/ppcconbo.cfm, June 2015.

[29] V. A. Dunayevsky, F. Abbassian, and A. Judzis. Dynamic stability of drillstrings
under fluctuating weight on bit. SPE Drilling and Completion, 8(2):84–92, 1993.

[30] S. Dwars. Recent advances in soft torque rotary systems. In SPE/IADC Drilling
Conference and Exhibition, SPE/IADC 173037, London, United Kingdom, March
2015.

[31] M. W. Dykstra, D. C.-K. Chen, T. M. Warren, and J. J. Azar. Drillstring
component mass imbalance: A major source of downhole vibrations. SPE Drilling
and Completion, 11(4):234–241, 1996.

[32] M. A. Elsayed and D. W. Dareing. Coupling of longitudinal and torsional vibra-
tions in a single-mass model of a drillstring. Developments in Theoretical and
Applied Mechanics, 17:128 – 139, 1994.

[33] M. A. Elsayed, R. L. Wells, D. W. Dareing, and K. Nagirimadugu. Effect of
process damping on longitudinal vibrations in drillstrings. ASME Journal of
Energy Resources Technology, 116(2):129–135, 1994.
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Acronyms

AST Anti stick-slip tool

BHA Bottom hole assembly

DOC depth-of-cut

DOF degree-of-freedom

FEM Finite-element method

FRF Frequency response function

ISS Input-to-state-stability

LFT Linear fractional transformation

LHP Left-half-plane

LISS Local input-to-state-stability

LMI Linear matrix inequality

LTI Linear time-invariant

LWD Logging while drilling

MWD Measurement while drilling

PDC Polycrystalline diamond compact

RHP Right-half-plane

ROP Rate-of-penetration

TOB Torque-on-bit

WOB Weight-on-bit





Summary

This thesis considers the design and implementation of controllers for oil-field
drilling systems to eliminate (torsional) stick-slip oscillations. These vibrations
decrease the drilling efficiency, accelerate bit wear, and may cause drill-string
failure due to fatigue. Increasing demands on the operating envelope of drilling
systems and a tendency towards drilling deeper and inclined wells impose higher
demands on the controllers used in drilling systems. Current industrial con-
trollers are not always able to eliminate stick-slip vibrations under such increas-
ingly challenging operating conditions. Two main reasons for this deficiency are
the influence of multiple dynamical modes of the drill-string on torsional vibra-
tions and the uncertainty in the bit-rock interaction. These issues are addressed
in this thesis and controllers to eliminate stick-slip vibrations in drilling systems
are designed and experimentally validated.

For the design and analysis of the proposed controller design methodologies,
modelling of the drill-string dynamics plays an important role. Most existing
controller designs rely on one or two degree-of-freedom models for the torsional
dynamics only. The resisting torque-on-bit as a result of the interaction torques
at the bit-rock interface is typically modelled as a frictional contact with a
velocity-weakening effect. In this work, a similar bit-rock interaction model,
with severe velocity-weakening effect, is adopted. In contrast to other studies,
however, a multi-modal model of the torsional dynamics is employed, as field
observations have revealed that multiple torsional resonance modes play a key
role in the onset of stick-slip oscillations. A lumped-parameter model, exhibiting
the most dominant torsional flexibility modes and based on a finite-element
method representation of a realistic drilling system, is proposed as a basis for
controller design.

The nominal operating condition for the drill-string system is associated with
a constant angular velocity, therewith avoiding stick-slip vibrations. A controller
should (locally) stabilize this constant rotational velocity while using only sur-
face measurements, since real-time down-hole information generally cannot be
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obtained in practice. Moreover, the controller has to ensure robustness with
respect to uncertainty in the nonlinear bit-rock interaction. Two controller de-
sign methodologies that meet these requirements have been developed. The first
strategy involves a nonlinear observer-based controller synthesis approach for
Lur’e-type systems with discontinuities. Particular benefits of this approach are
the fact that a realistic multi-modal model of the drill-string dynamics is taken
into account and a guarantee for (local) asymptotic stability of the closed-loop
system is given for bit-rock interaction laws satisfying a certain sector condition.
The second controller design strategy is based on robust H∞-control techniques.
Also this linear controller design methodology guarantees (local) asymptotic sta-
bility of the desired operating point based on surface measurements only, and is
applicable to multi-modal models of the drill-string dynamics. Moreover, the de-
signed controller is optimized to obtain robustness with respect to uncertainty in
the bit-rock interaction and performance specifications regarding measurement
noise sensitivity and actuator limitations are integrated in the controller design.

Based on the drill-string models developed, a novel lab-scale oil-field drill-
string system has been designed and realized, which exhibits the essential tor-
sional dynamics of a real drilling system. That is, it captures the first three
(torsional) resonance modes of the drill-string dynamics and exhibits stick-slip
vibrations when an industrial (SoftTorque) velocity controller is used. A linear
H∞-based controller and state-feedback controller have been implemented on
the setup. Both controllers successfully stabilize the desired angular velocity
and therewith mitigate stick-slip vibrations on the experimental setup. Experi-
mental validation of the designed controllers is an important intermediate step
towards field implementation of the controllers.

Besides active control of stick-slip vibrations, passive down-hole tools for
stick-slip suppression have been recently introduced in drilling practice. A spe-
cific tool that has been developed to eliminate bit-induced torsional vibrations
and to improve drilling efficiency is investigated in this work. This tool couples
the axial and torsional motion of the bit relative to the drill-string. Motivated
by the fact that recent research has shown that the coupling of the axial and
torsional drill-string dynamics through the bit-rock interaction is the root cause
for stick-slip vibrations, an existing model of the coupling between the axial and
torsional drill-string dynamics is extended with a model of the tool. Dynamic
analyses of this model are performed to assess the working principle of such a
down-hole tool. Indications of a rate-of-penetration increase and a reduction of
the destabilizing velocity-weakening effect in the averaged bit-rock interaction
have been revealed. However, further investigation is required to prove these
claims and to validate the model with field measurements.

The results in this thesis support the design of controllers and passive down-
hole tools to eliminate stick-slip vibrations in drilling systems and therewith con-
tribute to meeting the increasing demands on the operating envelope of drilling
systems.



Societal summary

Drilling systems are used for the exploration and production of oil, gas, mineral
resources, and geo-thermal energy. The primary importance of theses resources
is their large contribution in the total world energy consumption. Moreover,
oil is also of great importance for the production of a wide range of products,
such as plastics, soaps and detergents, solvents, synthetic fibers and rubbers. To
meet the increasing demand for these resources, the production has increased
substantially over the last decades. Because the easy-to-access reservoirs be-
came intensively explored, the drilling industry recognizes an increasing need
for drilling in harsher and more difficult environments. To reach such unconven-
tional reservoirs, deep and curved borehole geometries need to be drilled. This
tendency towards drilling deeper and inclined wells increases the susceptibility
to (torsional stick-slip) vibrations of drilling systems. These drill-string vibra-
tions decrease the quality of the borehole, provoke premature wear of drilling
equipment resulting in fatigue and induce failures such as drill pipe twist-off;
thereby compromising both the efficiency and safety of drilling operations.

In this research, two controller design strategies have been developed for ac-
tive feedback control of drilling systems in order to mitigate stick-slip vibrations.
As a stepping stone towards field implementation, the controllers have been vali-
dated on a lab-scale drill-string system, designed and realized in the scope of this
thesis. Simulation and experimental results show that the designed controllers
are able to mitigate stick-slip vibrations for operating conditions for which cur-
rent industrial controllers fail to eliminate stick-slip vibrations. Such drilling
automation will support the widening of the operational envelope of drilling
systems, which, in turn, will be instrumental in making challenging drilling op-
erations more efficient, reliable and safe.





Samenvatting

Dit proefschrift beschouwt het ontwerp en de implementatie van regelaars voor
boorsystemen om (torsie) stick-slip oscillaties te voorkomen. Dergelijke trillingen
verminderen de efficiëntie van het boorproces en kunnen leiden tot slijtage van de
boorkop en de boorpijp. Daarnaast leiden toenemende eisen ten aanzien van het
werkgebied van boorsystemen en de trend om steeds dieper te boren tot hogere
eisen aan regelaars voor boorsystemen. Regelaars die momenteel gebruikt wor-
den in de industrie zijn door deze toenemende eisen niet altijd in staat om stick-
slip trillingen te voorkomen. Twee belangrijke redenen voor deze tekortkoming
zijn de invloed van meerdere dynamische modes van de drill-string en onzeker-
heid in de interactie tussen de boorkop en het gesteente (‘bit-rock’ interactie). In
dit proefschrift worden deze effecten onderzocht en worden regelaars die stick-slip
trillingen kunnen voorkomen ontworpen en experimenteel gevalideerd.

Voor het ontwerp en de analyse van regelaars speelt het modelleren van de
drill-string dynamica een belangrijke rol. De meeste bestaande regelaars maken
gebruik van modellen van de torsie dynamica met slechts een of twee vrijheids-
graden. Hierbij wordt het interactie koppel tussen de boorkop en het gesteente
meestal gemodelleerd als een wrijvingskarakteristiek met Stribeck (‘velocity-
weakening’) effect. In dit onderzoek wordt een vergelijkbaar model met een sterk
velocity-weakening effect gebruikt. In tegenstelling tot andere studies, wordt
er in dit werk echter gebruik gemaakt van een model van de torsie dynamica
met meerdere dynamische flexibiliteits modes. Uit metingen blijkt namelijk dat
meerdere resonantie modes een rol spelen bij het ontstaan van torsie trillingen.
Dit model, dat gebaseerd is op een eindige elementen model van een boorsys-
teem, is gebruikt als basis voor het ontwerpen van de regelaars.

Een boorsysteem dient met een constante snelheid te roteren en daarmee
stick-slip trillingen te voorkomen. Een regelaar heeft als doel deze constante
snelheid (lokaal) te stabiliseren waarbij alleen metingen aan het oppervlak ge-
bruikt kunnen worden, omdat ‘real-time’ metingen dieper in het boorgat meestal
niet mogelijk zijn in de praktijk. Daarbij dient de regelaar ook robuustheid ten



242 Samenvatting

opzichte van de onzekerheid in de niet-lineaire bit-rock interactie te garanderen.
Twee regelaar ontwerp-strategieën, die aan deze eisen voldoen, zijn ontwikkeld
in dit proefschrift. De eerste methode betreft een niet-lineaire regelaar waarbij
gebruik gemaakt wordt van een waarnemer voor toestands-schatting. Een aan-
tal voordelen van deze aanpak zijn dat er gebruik gemaakt is van een realistisch
model van het boorsysteem met meerdere vrijheidsgraden en dat lokale stabiliteit
van het gesloten lus systeem is aangetoond voor bit-rock interactie wetten die
aan een bepaalde sector conditie voldoen. De tweede methode is gebaseerd op
robuuste H∞-regelaar technieken. Ook met deze lineaire regelaar kan lokale sta-
biliteit van het gewenste gedrag worden aangetoond. Daarbij is deze regelaar
zodanig ontworpen dat de robuustheid voor onzekerheid in de bit-rock interactie
geoptimaliseerd kan worden en specificaties met betrekking tot de prestatie van
het systeem, zoals gevoeligheid voor meetruis en beperkingen van de actuator,
kunnen worden gëıntegreerd in het regelaar ontwerp.

Op basis van de ontwikkelde modellen van de dynamica van een boorsysteem
is er een lab-opstelling ontworpen en gerealiseerd om de ontworpen regelaars ex-
perimenteel te valideren. Experimentele validatie is een belangrijke tussenstap
voordat de regelaars kunnen worden toegepast in het veld. De opstelling bevat
de essentiële torsie dynamica van een boorsysteem, dat wil zeggen dat de eerste
drie torsie resonantie modes van het systeem zijn meegenomen en dat er, zoals in
werkelijkheid, stick-slip trillingen optreden wanneer een industriële (SoftTorque)
regelaar wordt toegepast. Vervolgens zijn een lineaire H∞-regelaar en een rege-
laar gebaseerd op toestands-terugkoppeling gëımplementeerd. Beide regelaars
zijn in staat om de gewenste snelheid te stabiliseren en daarmee stick-slip tril-
lingen te voorkomen.

Naast actief regelen van stick-slip trillingen, bestaan er ook passieve gereed-
schappen die vlak bij de boorkop geplaatst kunnen worden om stick-slip trillingen
te onderdrukken. Een specifiek element dat hiervoor is ontwikkeld en daarnaast
de efficiëntie van het boorproces verbetert, is onderzocht in dit werk. Dit el-
ement koppelt de axiale en torsie beweging van de boorkop ten opzichte van
de drill-string. Aangezien recent onderzoek heeft aangetoond dat de koppeling
tussen de axiale en torsie dynamica via de bit-rock interactie de oorzaak is van
het ontstaan van stick-slip trillingen, is in dit proefschrift een model dat deze
koppeling beschrijft uitgebreid met een model van het ontwikkelde gereedschap.
Uit analyse van dit model blijkt dat het gereedschap de axiale snelheid van het
boorsysteem (de ‘rate-of-penetration’) kan verhogen en het destabiliserende ef-
fect in de gemiddelde bit-rock interactie kan verminderen. Er is echter verder
onderzoek nodig om deze resultaten te bevestigen en het model te valideren met
behulp van metingen van een realistisch boorsysteem.

De resultaten in dit proefschrift ondersteunen het ontwerp van regelaars en
down-hole instrumenten om stick-slip trillingen in boorsystemen te voorkomen.
Met deze resultaten wordt een bijdrage geleverd aan de toenemende behoefte
om de grenzen van het werkgebied van boorsystemen te verleggen.
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