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Summary. In this paper we extend the notion of convergent systems defined by
B.P. Demidovich and introduce the notions of uniformly, exponentially convergent
and input-to-state convergent systems. Basic (interconnection) properties of such
systems are established. Sufficient conditions for input-to-state convergence are pre-
sented. For a class of nonlinear systems we design (output) feedback controllers
that make the closed-loop system input-to-state convergent. The conditions for such
controller design are formulated in terms of LMIs.
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1 Introduction

In many control problems it is required that controllers are designed in such a
way that all solutions of the corresponding closed-loop system “forget” their
initial conditions. Actually, this is one of the main tasks of a feedback to
eliminate the dependency of solutions on initial conditions. In this case, all
solutions converge to some steady-state solution which is determined only
by the input of the closed-loop system. This input can be, for example, a
command signal or a signal generated by a feedforward part of the controller
or, as in the observer design problem, it can be the measured signal from the
observed system. This “convergence” property of a system plays an important
role in many nonlinear control problems including tracking, synchronization,
observer design and the output regulation problem, see e.g. [13; 15; 16; 18]
and references therein.

For asymptotically stable linear time invariant systems with inputs, this
is a natural property. Indeed, due to linearity of the system every solution is
globally asymptotically stable and, therefore, for a given input, all solutions
of such a system “forget” their initial conditions and converge to each other.
After transients, the dynamics of the system are determined only by the input.
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For nonlinear systems, in general, global asymptotic stability of a system with
zero input does not guarantee that all solutions of this system with a non-zero
input “forget” their initial conditions and converge to each other. There are
many examples of nonlinear globally asymptotically stable systems, which,
being excited by a periodic input, have coexisting periodic solutions. Such
periodic solutions do not converge to each other. This fact indicates that
for nonlinear systems the convergent dynamics property requires additional
conditions.

The property that all solutions of a system “forget” their initial conditions
and converge to some limit- or steady-state solution has been addressed in a
number of papers. In [17] this property was investigated for systems with
right-hand sides which are periodic in time. In that work systems with a
unique periodic globally asymptotically stable solution were called convergent.
Later, the definition of convergent systems given by V.A. Pliss in [17] was
extended by B.P. Demidovich in [3] (see also [11]) to the case of systems
which are not necessarily periodic in time. According to [3], a system is called
convergent if there exists a unique globally asymptotically stable solution
which is bounded on the whole time axis. Obviously, if such solution does
exist, all other solutions, regardless of their initial conditions, converge to
this solution, which can be considered as a limit- or steady-state solution. In
[2; 3] (see also [11]) B.P. Demidovich presented a simple sufficient condition
for such a convergence property. With the development of absolute stability
theory, V.A. Yakubovich showed in [20] that for a linear system with one scalar
nonlinearity satisfying some incremental sector condition, the circle criterion
guarantees the convergence property for this system with any nonlinearity
satisfying this incremental sector condition. In parallel with this Russian line
of research, the property of solutions converging to each other was addressed
in the works of T. Yoshizawa [21; 22] and J.P. LaSalle [9]. In [9] this property of
a system was called extreme stability. In [21] T. Yoshizawa provided Lyapunov
and converse Lyapunov theorems for extreme stability.

Several decades after these publications, the interest in stability proper-
ties of solutions with respect to one another revived. In the mid-nineties,
W. Lohmiller and J.-J.E. Slotine (see [10] and references therein) indepen-
dently reobtained and extended the result of B.P. Demidovich. A different
approach was pursued in the works by V. Fromion et al, [4–6]. In this ap-
proach a dynamical system is considered as an operator which maps some
functional space of inputs to a functional space of outputs. If such operator
is Lipschitz continuous (has a finite incremental gain), then, under certain
observability and reachability conditions, all solutions of a state-space real-
ization of this system converge to each other. In [1], D. Angeli developed a
Lyapunov approach for studying both the global uniform asymptotic stability
of all solutions of a system (in [1], this property is called incremental sta-
bility) and the so-called incremental input-to-state stability property, which
is compatible with the input-to-state stability approach (see e.g. [19]). The
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drawback of the incremental stability and incremental input-to-state stability
notions introduced in [1] is that they are not coordinate independent.

In this paper we extend the notion of convergent systems defined by
B.P. Demidovich. More specifically, we introduce the notions of (uniformly,
exponentially) convergent systems and input-to-state convergent systems in
Section 2. These notions are coordinate independent, which distinguishes them
from the other approaches mentioned above. In Section 3 we present results
on basic properties of (interconnected) convergent systems. Sufficient condi-
tions for exponential and input-to-state convergence properties are presented
in Section 4. In Section 5 we present (output) feedback controllers that make
the corresponding closed-loop system input-to-state convergent. Section 6 con-
tains the conclusions.

2 Convergent systems

In this section we give definitions of convergent systems. These definitions
extend the definition given in [3] (see also [11]). Consider the system

ż = F (z, t), (1)

where z ∈ R
d, t ∈ R and F (z, t) is locally Lipschitz in z and piecewise contin-

uous in t.

Definition 1. System (1) is said to be

• convergent if there exists a solution z̄(t) satisfying the following conditions
(i) z̄(t) is defined and bounded for all t ∈ R,
(ii) z̄(t) is globally asymptotically stable.

• uniformly convergent if it is convergent and z̄(t) is globally uniformly
asymptotically stable.

• exponentially convergent if it is convergent and z̄(t) is globally exponen-
tially stable.

The solution z̄(t) is called a limit solution. As follows from the definition of
convergence, any solution of a convergent system “forgets” its initial condition
and converges to some limit solution which is independent of the initial con-
dition. In general, the limit solution z̄(t) may be non-unique. But for any two
limit solutions z̄1(t) and z̄2(t) it holds that |z̄1(t)− z̄2(t)| → 0 as t → +∞. At
the same time, for uniformly convergent systems the limit solution is unique,
as formulated below.

Property 1. If system (1) is uniformly convergent, then the limit solution z̄(t)
is the only solution defined and bounded for all t ∈ R.

Proof. Suppose there exists another solution z̃(t) defined and bounded for all
t ∈ R. Let R > 0 be such that |z̃(t) − z̄(t)| < R for all t ∈ R. Such R exists
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since both z̃(t) and z̄(t) are bounded for all t ∈ R. Suppose at some instant
t∗ ∈ R the solutions z̄(t) and z̃(t) satisfy |z̃(t∗) − z̄(t∗)| ≥ ε > 0 for some
ε > 0. Since z̄(t) is globally uniformly asymptotically stable, there exists a
number T (ε,R) > 0 such that if |z̃(t0) − z̄(t0)| < R for some t0 ∈ R then

|z̃(t) − z̄(t)| < ε, ∀ t ≥ t0 + T (ε,R). (2)

Set t0 := t∗−T (ε,R). Then for t = t∗ inequality (2) implies |z̃(t∗)− z̄(t∗)| < ε.
Thus, we obtain a contradiction. Since t∗ has been chosen arbitrarily, this
implies z̃(t) ≡ z̄(t).¤

The convergence property is an extension of stability properties of asymptot-
ically stable linear time-invariant (LTI) systems. Recall that for a piecewise
continuous vector-function f(t), which is defined and bounded on t ∈ R, the
system ż = Az + f(t) with a Hurwitz matrix A has a unique solution z̄(t)
which is defined and bounded on t ∈ (−∞,+∞). It is given by the formula

z̄(t) :=
∫ t

−∞
exp(A(t − s))f(s)ds. This solution is globally exponentially sta-

ble with the rate of convergence depending only on the matrix A. Thus, an
asymptotically stable LTI system excited by a bounded piecewise-continuous
function f(t) is globally exponentially convergent.

In the scope of control problems, time dependency of the right-hand side
of system (1) is usually due to some input. This input may represent, for
example, a disturbance or a feedforward control signal. Below we will consider
convergence properties for systems with inputs. So, instead of systems of the
form (1), we consider systems

ż = F (z, w) (3)

with state z ∈ R
d and input w ∈ R

m. The function F (z, w) is locally Lipschitz
in z and continuous in w. In the sequel we will consider the class PCm of
piecewise continuous inputs w(t) : R → R

m which are bounded for all t ∈ R.
Below we define the convergence property for systems with inputs.

Definition 2. System (3) is said to be (uniformly, exponentially) convergent
if for every input w ∈ PCm the system ż = F (z, w(t)) is (uniformly, exponen-
tially) convergent. In order to emphasize the dependency on the input w(t),
the limit solution is denoted by z̄w(t).

The next property extends the uniform convergence property to the input-to-
state stability (ISS) framework.

Definition 3. System (3) is said to be input-to-state convergent if it is uni-
formly convergent and for every input w ∈ PCm system (3) is ISS with respect
to the limit solution z̄w(t), i.e. there exist a KL-function β(r, s) and a K∞-
function γ(r) such that any solution z(t) of system (3) corresponding to some
input ŵ(t) := w(t) + ∆w(t) satisfies

|z(t) − z̄w(t)| ≤ β(|z(t0) − z̄w(t0)|, t − t0) + γ( sup
t0≤τ≤t

|∆w(τ)|). (4)
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In general, the functions β(r, s) and γ(r) may depend on the particular input
w(t). If β(r, s) and γ(r) are independent of the input w(t), then such system
is called uniformly input-to-state convergent.

Similar to the conventional ISS property, the property of input-to-state conver-
gence is especially useful for studying convergence properties of interconnected
systems as will be illuminated in the next section.

3 Basic properties of convergent systems

As follows from the previous section, the (uniform) convergence property and
the input-to-state convergence property are extensions of stability proper-
ties of asymptotically stable LTI systems. In this section we present certain
properties of convergent systems that are inherited from asymptotically sta-
ble LTI systems. Since all ingredients of the (uniform) convergence and the
input-to-state convergence properties are invariant under smooth coordinate
transformations (see Definitions 1, 3), we can formulate the following property.

Property 2. The uniform convergence property and input-to-state convergence
are preserved under smooth coordinate transformations.

The next statement summarizes some properties of uniformly convergent sys-
tems excited by periodic or constant inputs.

Property 3 ([3]). Suppose system (3) with a given input w(t) is uniformly
convergent. If the input w(t) is constant, the corresponding limit solution
z̄w(t) is also constant; if the input w(t) is periodic with period T , then the
corresponding limit solution z̄w(t) is also periodic with the same period T .

Proof. Suppose the input w(t) is periodic with period T > 0. Denote
z̃w(t) := z̄w(t + T ). Notice that z̃w(t) is a solution of system (3). Namely,
by the definition of z̃w(t), it is a solution of the system

ż = F (z, w(t + T )) ≡ F (z, w(t)).

Moreover, z̃(t) is bounded for all t ∈ R due to boundedness of the limit
solution z̄(t). Therefore, by Property 1 it holds that z̃(t) ≡ z̄(t), i.e. the limit
solution z̄(t) is T -periodic. A constant input w(t) ≡ w∗ is periodic for any
period T > 0. Hence, the corresponding limit solution z̄w(t) is also periodic
with any period T > 0. This implies that z̄w(t) is constant.¤

If two inputs converge to each other, so do the corresponding limit solutions,
as follows from the next property.

Property 4. Suppose system (3) is uniformly convergent and F (z, w) is C1.
Then for any two inputs w1(t) and w2(t) satisfying w1(t) − w2(t) → 0 as
t → +∞, the corresponding limit solutions z̄w1

(t) and z̄w2
(t) satisfy z̄w1

(t) −
z̄w2

(t) → 0 as t → +∞.
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Proof. See Appendix.

The next two properties relate to parallel and series connections of uniformly
convergent systems.

Property 5 (Parallel connection). Consider the system

{

ż = F (z, w), z ∈ R
d

ẏ = G(y, w), y ∈ R
q.

(5)

Suppose the z- and y-subsystems are uniformly convergent (input-to-state
convergent). Then system (5) is uniformly convergent (input-to-state conver-
gent).

Proof. The proof directly follows from the definitions of uniformly convergent
and input-to-state convergent systems.¤

Property 6 (Series connection). Consider the system

{

ż = F (z, y, w), z ∈ R
d

ẏ = G(y, w), y ∈ R
q.

(6)

Suppose the z-subsystem with (y, w) as input is input-to-state convergent and
the y-subsystem with w as input is input-to-state convergent. Then system
(6) is input-to-state convergent.

Proof. See Appendix.

The next property deals with bidirectionally interconnected input-to-state
convergent systems.

Property 7. Consider the system

{

ż = F (z, y, w), z ∈ R
d

ẏ = G(z, y, w), y ∈ R
q.

(7)

Suppose the z-subsystem with (y, w) as input is input-to-state convergent.
Assume that there exists a class KL function βy(r, s) such that for any input
(z, w) ∈ PCd+m any solution of the y-subsystem satisfies

|y(t)| ≤ βy(|y(t0)|, t − t0).

Then the interconnected system (7) is input-to-state convergent.

Proof. Denote z̄w(t) to be the limit solution of the z-subsystem corresponding
to y = 0 and to some w ∈ PCm. Then (z̄w(t), 0) is a solution of the intercon-
nected system (7) which is defined and bounded for all t ∈ R. Performing the
change of coordinates z̃ = z − z̄w(t) and applying the small gain theorem for
ISS systems from [7] we establish the property.¤
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Remark 1. Property 7 can be used for establishing the separation principle
for input-to-state convergent systems as it will be done in Section 5. In that
context system (7) represents a system in closed loop with a state-feedback
controller and an observer generating state estimates for this controller. The
y-subsystem corresponds to the observer error dynamics.C

4 Sufficient conditions for convergence

In the previous sections we presented the definitions and basic properties
of convergent systems. The next question to be addressed is: how to check
whether a system exhibits these convergence properties? In this section we
provide sufficient conditions for convergence for smooth systems.

A simple sufficient condition for the exponential convergence property for
smooth systems was proposed in [2] (see also [11]). Here we give a different for-
mulation of the result from [2] adapted for systems with inputs and extended
to include the input-to-state convergence property.

Theorem 1. Consider system (3) with the function F (z, w) being C1 with
respect to z and continuous with respect to w. Suppose there exist matrices
P = PT > 0 and Q = QT > 0 such that

P
∂F

∂z
(z, w) +

∂F

∂z

T

(z, w)P ≤ −Q, ∀z ∈ R
d, w ∈ R

m. (8)

Then system (3) is exponentially convergent and input-to-state convergent.

Proof. A complete proof of this theorem is given in Appendix. It is based on
the following technical lemma, which we will use in Section 5.

Lemma 1 ([2; 11]). Condition (8) implies

(z1 − z2)
T P (F (z1, w) − F (z2, w)) ≤ −a(z1 − z2)

T P (z1 − z2). (9)

for all z1, z2 ∈ R
d, w ∈ R

m, and for some a > 0.

We will refer to condition (8) as the Demidovich condition, after B.P. Demi-
dovich, who applied this condition for studying convergence properties of dy-
namical systems [2; 3; 11]. In the sequel, we say that a system satisfies the
Demidovich condition if the right-hand side of this system satisfies condition
(8) for some matrices P = P T > 0 and Q = QT > 0.

Example 1. Let us illustrate Theorem 1 with a simple example. Consider the
system

ż1 = −z1 + wz2 + w (10)

ż2 = −wz1 − z2.
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The Jacobian of the right-hand side of system (10) equals

J(z1, z2, w) =

(

−1 w
−w −1

)

.

Obviously, J +JT = −2I < 0. Thus, the Demidovich condition (8) is satisfied
for all z1, z2 and w (with P = I and Q = 2I). By Theorem 1, system (10) is
input-to-state convergent.C

The next example illustrates the differences between the input-to-state con-
vergence and incremental ISS (δISS) defined in [1].

Example 2. Consider the scalar system ż = −z + w3. As follows from [1], this
system is not δISS. At the same time, by Theorem 1 this system is input-to-
state convergent.

Remark 2. In some cases feasibility of the Demidovich condition (8) can be
concluded from the feasibility of certain LMIs. Namely, suppose there exist
matrices A1, . . . ,As such that

∂F

∂z
(z, w) ∈ co{A1, . . . ,As}, ∀ z ∈ R

d, w ∈ R
m,

where co{A1, . . . ,As} is the convex hull of matrices A1, . . . ,As. If the LMIs

PAi + AT
i P < 0, i = 1, . . . , s (11)

admit a common positive definite solution P = P T > 0, then condition (8)
is satisfied with this matrix P . Taking into account the existence of powerful
LMI solvers, this is a useful tool for checking convergence properties.

In some cases, feasibility of the LMI (11) can be checked using frequency
domain methods following from the Kalman-Yakubovich lemma (see [8; 20]).
For example, one can use the circle criterion, as follows from the next lemma.

Lemma 2 ([8; 20]). Consider a Hurwitz matrix A ∈ R
d×d, matrices B ∈

R
d×1, C ∈ R

1×d and some number γ > 0. Denote A−
γ := A − γBC and

A+
γ := A + γBC. There exists P = P T > 0 such that

PA−
γ + (A−

γ )T P < 0, PA+
γ + (A+

γ )T P < 0 (12)

if and only if the inequality
∣

∣C(iωI − A)−1B
∣

∣ < 1
γ

is satisfied for all ω ∈ R.

This lemma allows to check input-to-state convergence for the so-called Lur’e
systems, as shown in the following example.
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Example 3. Consider the system

ż = Az + Bϕ(y) + Ew (13)

y = Cz + Hw,

with the Hurwitz matrix A, scalar output y and scalar nonlinearity ϕ(y) ∈ R.

Suppose the nonlinearity ϕ(y) is C1 and it satisfies the condition
∣

∣

∣

∂ϕ
∂y

(y)
∣

∣

∣
≤ γ

for all y ∈ R. Then the Jacobian of the right-hand side of system (13), which
is equal to ∂F

∂z
= A + BC ∂ϕ

∂y
(y), satisfies ∂F

∂z
∈ co{A−

γ , A+
γ } for all y ∈ R. By

Lemma 2, if the condition
∣

∣C(iωI − A)−1B
∣

∣ < 1
γ

is satisfied for all ω ∈ R,

then LMI (12) admits a common positive definite solution. Therefore, system
(13) satisfies the Demidovich condition (8) for all z ∈ R

d and all w ∈ R
m.

By Theorem 1, such a system is exponentially convergent and input-to-state
convergent.C

By Property 6 a series connection of input-to-state convergent systems is
again an input-to-state convergent system. Therefore we obtain the follow-
ing corollary of Property 6 and Theorem 1: a series connection of systems
satisfying the Demidovich condition is an input-to-state convergent system.

5 Controller design for convergent systems

The convergence property is desirable in many control problems because the
steady-state dynamics of a convergent system are independent of the initial
conditions. In this section we address the problem of how to achieve the con-
vergence property in a control system by means of feedback. Consider control
systems of the form

ẋ = f(x, u, w) (14)

y = h(x,w),

with state x ∈ R
n, control u ∈ R

k, external input w ∈ R
m and output y ∈ R

l.
It is assumed that the functions f(x, u, w) and h(x,w) are C1. In this setting
the input u corresponds to the feedback part of the controller. The external
input w includes external time-dependent inputs such as disturbances and
feedforward control signals. Once the convergence property is achieved by
a proper choice of feedback, the feedforward control signals can be used in
order to shape the steady-state dynamics of the closed-loop system (see e.g.
[14; 16]). We will focus on the problem of finding a feedback that makes the
closed-loop system convergent and will not address the problem of shaping
the steady-state dynamics by means of a feedforward controller.

Denote ζ := (x, u, w),

A(ζ) :=
∂f

∂x
(x, u, w), B(ζ) :=

∂f

∂u
(x, u, w), C(ζ) :=

∂h

∂x
(x,w).
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In the sequel we make the following assumption:
A1 there exist matrices A1, . . . ,As, B1, . . . ,Bs and C1, . . . , Cs such that

[A(ζ) B(ζ)] ∈ co{[A1 B1], . . . , [As Bs]}, [A(ζ) C(ζ)] ∈ co{[A1 C1], . . . , [As Cs]}

for all ζ ∈ R
n+k+m.

The following lemma provides conditions under which there exists a state
feedback rendering the corresponding closed-loop system input-to-state con-
vergent.

Lemma 3. Consider the system (14). Suppose the LMI

Pc = PT
c > 0, AiPc + PcA

T
i + BiY + YTBT

i < 0, i = 1, . . . , s (15)

is feasible. Then the system

ẋ = f(x,K(x + v), w), (16)

with K := YP−1
c and (v, w) as inputs is input-to-state convergent.

Proof. Denote F (x, v, w) := f(x,K(x+v), w). The Jacobian of the right-hand
side of system (16) equals

∂F

∂x
(x, v, w) :=

∂f

∂x
(x,K(x + v), w) +

∂f

∂u
(x,K(x + v), w)K.

Due to assumption A1, ∂F
∂x

(x, v, w) ∈ co{(Ai + BiK), i = 1, . . . , s} for all

(x, v, w) ∈ R
n+n+m. Since the LMI (15) is feasible, for the matrix K := YP−1

c

it holds that

P−1
c (Ai + BiK) + (Ai + BiK)TP−1

c < 0, i = 1, . . . , s.

Therefore, by Remark 2 the closed-loop system (16) satisfies the Demidovich
condition with the matrix P := P−1

c > 0. By Theorem 1 system (16) with
(v, w) as inputs is input-to-state convergent.¤

The next lemma shows how to design an observer based on the Demidovich
condition.

Lemma 4. Consider system (14). Suppose the LMI

Po = PT
o > 0, PoAi + AT

i Po + XCi + CT
i X T < 0, i = 1, . . . , s (17)

is feasible. Then the system

˙̂x = f(x̂, u, w) + L(h(x̂, w) − y), with L := P−1
o X (18)

is an observer for system (14) with a globally exponentially stable error dy-
namics. Moreover, the error dynamics
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∆ẋ = G(x + ∆x, u,w) − G(x, u, w), (19)

where G(x, u, w) := f(x, u, w) + Lh(x,w) is such that for any bounded x(t)
and w(t) and any feedback u = U(∆x, t) all solutions of system (19) satisfy

|∆x(t)| ≤ Ce−a(t−t0)|∆x(t0)|, (20)

where the numbers C > 0 and a > 0 are independent of x(t), w(t) and u =
U(∆x, t).

Proof. Let us first prove the second part of the lemma. The Jacobian of the
right-hand side of system (19) equals

∂G

∂∆x
(x + ∆x, u,w) =

∂f

∂x
(x + ∆x, u,w) + L

∂h

∂x
(x + ∆x,w).

Due to Assumption A1 it holds that

∂G

∂∆x
(x + ∆x, u,w) ∈ co{(Ai + LCi), i = 1, . . . , s}

for all x, u, w and ∆x. Since the LMI (17) is feasible, for the matrix L := P−1
o X

it holds that

Po(Ai + LCi) + (Ai + LCi)
TPo < 0, i = 1, . . . , s.

Therefore, by Remark 2 system (19) with inputs x, u and w satisfies the
Demidovich condition with the matrix P := Po > 0 and some matrix Q > 0.
Consider the function V (∆x) := 1/2∆xT P∆x. By Lemma 1 the derivative of
this function along solutions of system (19) satisfies

dV

dt
= ∆xT P (G(x + ∆x, u,w) − G(x, u, w)) ≤ −2aV (∆x). (21)

In inequality (21) the number a > 0 depends only on the matrices P and Q
and does not depend on the particular values of x, u and w. This inequality,
in turn, implies that there exists C > 0 depending only on the matrix P such
that if the inputs x(t) and w(t) are defined for all t ≥ t0 then the solution
∆x(t) is also defined for all t ≥ t0 and satisfies (20). It remains to show that
system (18) is an observer for system (14). Denote ∆x := x̂− x(t). Since x(t)
is a solution of system (14), ∆x(t) satisfies equation (19). By the previous
analysis, we obtain that ∆x(t) satisfies (20). Therefore, the observation error
∆x exponentially tends to zero.¤

Lemmas 3 and 4 show how to design a state feedback controller that
makes the closed-loop system input-to-state convergent and an observer for
this system with an exponentially stable error dynamics. In fact, for such
controllers and observers one can use the separation principle in order to
design an output feedback controller that makes the closed-loop system input-
to-state convergent. This statement follows from the next theorem.
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Theorem 2. Consider system (14). Suppose LMIs (15) and (17) are feasible.
Denote K := YP−1

c and L := P−1
o X . Then system (14) in closed loop with

the controller

˙̂x = f(x̂, u, w) + L(h(x̂, w) − y), (22)

u = Kx̂ (23)

with w as an input is input-to-state convergent.

Proof. Denote ∆x := x̂−x. Then in the new coordinates (x,∆x) the equations
of the closed-loop system are

ẋ = f(x,K(x + ∆x), w), (24)

∆ẋ = G(x + ∆x, u,w) − G(x, u, w), (25)

u = K(x + ∆x), (26)

where G(x, u, w) = f(x, u, w) + Lh(x,w). By the choice of K, system (24)
with (∆x,w) as inputs is input-to-state convergent (see Lemma 3). By the
choice of the observer gain L, for any inputs x(t), w(t) and for the feedback
u = K(x(t) + ∆x), any solution of system (25), (26) satisfies

|∆x(t)| ≤ Ce−a(t−t0)|∆x(t0)|, (27)

where the numbers C > 0 and a > 0 are independent of x(t) and w(t) (see
Lemma 4). Applying Property 7 (see Section 3), we obtain that the closed-loop
system (24)-(26) is input-to-state convergent.¤

Although the proposed controller and observer structures do not signifi-
cantly differ from the ones proposed in literature, they achieve the new goal
of rendering the closed-loop system convergent (as opposed to asymptotically
stable). The output-feedback controller design presented in Theorem 2 re-
lies on the separation principle which, in turn, is based on the input-to-state
convergence of the system/state-feedback controller combination. This input-
to-state convergence property serves as a counterpart of the input-to-state
stability property often used to achieve separation of controller and observer
designs in rendering the closed-loop system asymptotically stable (as opposed
to convergent).

6 Conclusions

In this paper we have extended the notion of convergent systems defined by
B.P. Demidovich and introduced the notions of (uniformly, exponentially) con-
vergent systems as well as input-to-state convergent systems. These notions
are coordinate independent, which makes them more convenient to use than
the notions of incremental stability and incremental input-to-state stability.
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We have presented basic properties of convergent systems and studied paral-
lel, series and feedback interconnections of input-to-state convergent systems.
These properties resemble the properties of asymptotically stable LTI sys-
tems. Due to this fact (input-to-state) convergent systems are convenient to
deal with in many control and system analysis problems. We have presented
a simple sufficient condition for the input-to-state convergence property. In
certain cases this condition can be reduced to checking the feasibility of cer-
tain LMIs. Finally, for a class of nonlinear systems we have presented an
(output) feedback controller that make the closed-loop system input-to-state
convergent. The presented controller consists of a state-feedback controller
that makes the closed-loop system input-to-state convergent and an observer
with an exponentially stable error dynamics. For such controllers and ob-
servers the separation principle holds. This allows us to unite the obtained
controller and observer. The conditions for such controller and observer de-
signs are formulated in terms of LMIs.

The results presented in this paper are mostly for systems with smooth
right-hand sides. Convergent systems with non-smooth and discontinuous
right-hand sides are considered in [12; 13; 16]. Extensions of convergent sys-
tems to non-global settings, further convergence properties and controller de-
sign techniques as well as applications to the output regulation problem, con-
trolled synchronization problem and nonlinear observer design problem can
be found in [16].

Acknowledgement. This research has been supported by the Netherlands Organiza-
tion for Scientific Research NWO.

Appendix

Proof of Property 4. Consider two inputs w1 and w2 ∈ PCm satisfying w1(t)−
w2(t) → 0 as t → +∞ and the corresponding limit solutions z̄w1

(t) and
z̄w2

(t). By the definition of convergence, both z̄w1
(t) and z̄w2

(t) are defined
and bounded for all t ∈ R. Consider the system

∆ż = F (z̄w2
(t) + ∆z,w2(t) + ∆w) − F (z̄w2

(t), w2(t)). (28)

This system describes the dynamics of ∆z = z(t)− z̄w2
(t), where z(t) is some

solution of system (3) with the input w2(t) + ∆w(t). Since F (z, w) ∈ C1, and
z̄w2

(t) and w2(t) are bounded, the partial derivatives

∂F

∂z
(z̄w2

(t) + ∆z,w2(t) + ∆w),
∂F

∂w
(z̄w2

(t) + ∆z,w2(t) + ∆w)

are bounded in some neighborhood of the origin (∆z,∆w) = (0, 0), uniformly
in t ∈ R. Also, for ∆w ≡ 0 system (28) has a uniformly globally asymptotically
stable equilibrium ∆z = 0. This implies (Lemma 5.4, [8]) that system (28)
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is locally ISS with respect to the input ∆w. Therefore, there exist numbers
kz > 0 and kw > 0 such that for any input ∆w(t) satisfying |∆w(t)| ≤ kw

for all t ≥ t0 and ∆w(t) → 0 as t → +∞, it holds that any solution ∆z(t)
starting in |∆z(t0)| ≤ kz tends to zero, i.e. ∆z(t) → 0 as t → +∞.

Choose t0 ∈ R such that |w1(t) − w2(t)| ≤ kw for all t ≥ t0. Consider a
solution of the system

ż = F (z, w1(t)) (29)

starting in a point z(t0) satisfying |z(t0) − z̄w2
(t0)| ≤ kz. By the reasoning

presented above, ∆z(t) := z(t) − z̄w2
(t) → 0 as t → +∞. At the same time,

z̄w1
(t) is a uniformly globally asymptotically stable solution of system(29).

Hence, z(t) − z̄w1
(t) → 0 as t → +∞. Therefore, z̄w2

(t) − z̄w1
(t) → 0 as

t → +∞.¤

Proof of Property 6. Consider some input w ∈ PCm. Since the y-subsystem
is input-to-state convergent, there exists a solution ȳw(t) which is defined and
bounded for all t ∈ R. Since the z-subsystem with (y, w) as inputs is input-
to-state convergent, there exists a limit solution z̄w(t) corresponding to the
input (ȳw(t), w(t)). This z̄w(t) is defined and bounded for all t ∈ R.

Let (z(t), y(t)) be some solution of system (6) with some input w̃(t). Denote
∆z := z− z̄w(t), ∆y := y− ȳw(t) and ∆w = w̃−w(t). Then ∆z and ∆y satisfy
the equations

∆ż = F (z̄w(t) + ∆z, ȳw(t) + ∆y,w(t) + ∆w) − F (z̄w(t), ȳw(t), w(t)) (30)

∆ẏ = G(ȳw(t) + ∆y,w(t) + ∆w) − G(ȳw(t), w(t)). (31)

Since both the z-subsystem and the y-subsystem of system (6) are input-to-
state convergent, system (30) with (∆y,∆w) as input is ISS and system (31)
with ∆w as input is ISS. Therefore, the cascade interconnection of ISS systems
(30), (31) is an ISS system (see e.g. [19]). In the original coordinates (z, y)
this means that system (6) is ISS with respect to the solution (z̄w(t), ȳw(t)).
This implies that system (6) is input-to-state convergent.¤

Proof of Theorem 1. The proof of exponential convergence can be found
in [2; 11]. We only need to show that system (3) is input-to-state convergent.
Consider some input w(t) and the corresponding limit solution z̄w(t). Let
z(t) be a solution of system (3) corresponding to some input ŵ(t). Denote
∆z := z − z̄w(t) and ∆w := ŵ − w(t). Then ∆z satisfies the equation

∆ż = F (z̄w(t) + ∆z,w(t) + ∆w) − F (z̄w(t), w(t)). (32)

We will show that system (32) with ∆w as input is ISS. Due to the arbitrary
choice of w(t), this fact implies that system (3) is input-to-state convergent.

Consider the function V (∆z) = 1
2 (∆z)T P∆z. Its derivative along solutions

of system (32) satisfies
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dV

dt
= ∆zT P{F (z̄w(t) + ∆z,w(t) + ∆w(t)) − F (z̄w(t), w(t))} (33)

= ∆zT P{F (z̄w(t) + ∆z,w(t) + ∆w(t)) − F (z̄w(t), w(t) + ∆w(t))}

+∆zT P{F (z̄w(t), w(t) + ∆w(t)) − F (z̄w(t), w(t))}.

Applying Lemma 1 to the first component in (33), we obtain

∆zT P{F (z̄w(t) + ∆z,w(t) + ∆w(t)) − F (z̄w(t), w(t) + ∆w(t))} ≤ −a|∆z|2P ,
(34)

where |∆z|2P := (∆z)T P∆z. Applying the Cauchy inequality to the second
component in formula (33), we obtain the following estimate:

|∆zT P{F (z̄w(t), w(t) + ∆w(t)) − F (z̄w(t), w(t))}| ≤ |∆z|P |δ(t,∆w)|P , (35)

where
δ(t,∆w) := F (z̄w(t), w(t) + ∆w(t)) − F (z̄w(t), w(t)).

Since F (z, w) is continuous and z̄w(t) and w(t) are bounded for all t ∈ R, the
function δ(t,∆w) is continuous in ∆w uniformly in t ∈ R. This, in turn, im-
plies that ρ̃(r) := sup

t∈R sup|∆w|≤r |δ(t,∆w)|P is a continuous nondecreasing
function. Define the function ρ(r) := ρ̃(r) + r. This function is continuous,
strictly increasing and ρ(0) = 0. Thus, it is a class K function. Also, due to
the definition of ρ(r), we obtain the following estimate

|δ(t,∆w)|P ≤ ρ(|∆w|).

After substituting this estimate, together with estimates (35) and (34), in
formula (33), we obtain

dV

dt
≤ −a|∆z|2P + |∆z|P ρ(|∆w|). (36)

From this formula we obtain

dV

dt
≤ −

a

2
|∆z|2P , ∀ |∆z|P ≥

2

a
ρ(|∆w|). (37)

By the Lyapunov characterization of the ISS property (see e.g. [8], Theorem
5.2), we obtain that system (32) is input-to-state stable. This completes the
proof of the theorem.¤
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